parallel_model_runner.py 11.5 KB
Newer Older
litzh's avatar
litzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import copy
import gc
import json

import numpy as np
import torch
from loguru import logger

from lightx2v.deploy.common.va_controller import VAController
from lightx2v.infer import init_runner  # noqa
from lightx2v.utils.profiler import *
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.utils.set_config import set_config, set_parallel_config
from lightx2v.utils.utils import seed_all


class ParallelModelRunner:
    def __init__(self, args):
        self.clip_runners = {}
        self.cur_name = None
        self.is_parallel = False
        self.prev_frame_length = None
        self.segment_durations = {}
        self.prev_durations = {}

        with open(args.config_json, "r", encoding="utf-8") as f:
            cfg = json.load(f)
        clip_configs = cfg["clip_configs"]
        for clip_config in clip_configs:
            args.config_json = clip_config["path"]
            self.create_clip_runner(clip_config["name"], args)

        assert len(self.clip_runners) == 2, "Exactly 2 clip runners are required!"
        assert "s2v_clip" in self.clip_runners, "s2v_clip must be in the clip runners"
        assert "f2v_clip" in self.clip_runners, "f2v_clip must be in the clip runners"

    def create_clip_runner(self, name, args):
        config = set_config(args)
        logger.info(f"clip {name} config:\n{json.dumps(config, ensure_ascii=False, indent=4)}")

        target_fps = config.get("target_fps", 16)
        max_num_frames = config.get("target_video_length", 81)
        prev_frame_length = config.get("prev_frame_length", 5)
        if self.prev_frame_length is None:
            self.prev_frame_length = prev_frame_length
        # check all clip runners have the same prev_frame_length
        assert self.prev_frame_length == prev_frame_length, "All clip runners must have the same prev_frame_length"
        self.segment_durations[name] = max_num_frames / target_fps
        self.prev_durations[name] = prev_frame_length / target_fps

        seed_all(args.seed)
        if config.get("parallel", False):
            if not self.is_parallel:
                # worker entry has already initialized parallel environment
                # platform_device = PLATFORM_DEVICE_REGISTER.get(os.getenv("PLATFORM", "cuda"), None)
                # platform_device.init_parallel_env()
                self.is_parallel = True
            set_parallel_config(config)

        torch.set_grad_enabled(False)
        self.clip_runners[name] = RUNNER_REGISTER[config["model_cls"]](config)
        if self.cur_name is None:
            self.cur_name = name
        self.clip_runners[name].stop_signal = False
        self.clip_runners[name].pause_signal = False
        logger.info(f"Clip {name} initialized successfully!")

    def init_modules(self):
        for name, runner in self.clip_runners.items():
            runner.init_modules()
            logger.info(f"Clip {name} modules initialized successfully!")

    def set_config(self, args, **kwargs):
        self.clip_runners[self.cur_name].set_config(args, **kwargs)

    def init_run_segment(self, segment_idx, audio_array):
        return self.clip_runners[self.cur_name].init_run_segment(segment_idx, audio_array)

    def run_segment(self, segment_idx):
        return self.clip_runners[self.cur_name].run_segment(segment_idx)

    def end_run_segment_stream(self, latents, valid_duration):
        return self.clip_runners[self.cur_name].end_run_segment_stream(latents, valid_duration=valid_duration)

    def check_stop(self):
        return self.clip_runners[self.cur_name].check_stop()

    @property
    def config(self):
        return self.clip_runners[self.cur_name].config

    @property
    def input_info(self):
        return self.clip_runners[self.cur_name].input_info

    @property
    def vfi_model(self):
        return self.clip_runners[self.cur_name].vfi_model

    @property
    def vsr_model(self):
        return self.clip_runners[self.cur_name].vsr_model

    @property
    def stop_signal(self):
        return self.clip_runners[self.cur_name].stop_signal

    @property
    def pause_signal(self):
        return self.clip_runners[self.cur_name].pause_signal

    @property
    def can_pause(self):
        return self.clip_runners[self.cur_name].can_pause

    @stop_signal.setter
    def stop_signal(self, value):
        self.clip_runners[self.cur_name].stop_signal = value

    @pause_signal.setter
    def pause_signal(self, value):
        self.clip_runners[self.cur_name].pause_signal = value

    @can_pause.setter
    def can_pause(self, value):
        self.clip_runners[self.cur_name].can_pause = value

    def _switch_model(self, name):
        assert name in self.clip_runners, f"Clip {name} not found"
        self.cur_name = name

    def _run_input_encoder(self, input_info=None):
        for name, runner in self.clip_runners.items():
            with ProfilingContext4DebugL1(f"run_input_encoder_{name}"):
                if input_info is not None:
                    runner.input_info = copy.deepcopy(input_info)
                runner.inputs = runner.run_input_encoder()
                runner.can_pause = False
                logger.info(f"Clip {name} input encoder end, latent_shape: {runner.input_info.latent_shape}, target_shape: {runner.input_info.target_shape}")

    def _change_image_path(self, image_path):
        for runner in self.clip_runners.values():
            runner.input_info.image_path = image_path

    def _change_prev_video(self, prev_video):
        for runner in self.clip_runners.values():
            runner.prev_video = prev_video

    def _reset_prev_video(self):
        for runner in self.clip_runners.values():
            if runner.config.get("f2v_process", False):
                runner.prev_video = runner.ref_img.unsqueeze(2)
            else:
                runner.prev_video = None

    def _broadcast_prev_video(self):
        runner = self.clip_runners[self.cur_name]
        self._change_prev_video(runner.prev_video)

    def _clear_va_controller(self):
        for r in self.clip_runners.values():
            r.va_controller = None

    def _set_va_controller(self, va_controller):
        for r in self.clip_runners.values():
            r.va_controller = None
        self.clip_runners[self.cur_name].va_controller = va_controller

    def _end_run(self):
        for runner in self.clip_runners.values():
            runner.end_run()

    def _warmup(self):
        for name, runner in self.clip_runners.items():
            with ProfilingContext4DebugL1(f"warmup {name}"):
                sample_rate = runner.config.get("audio_sr", 16000)
                sample_count = int(self.segment_durations[name] * sample_rate)
                audio_array = np.zeros(sample_count, dtype=np.float32)
                # stream audio input, video segment num is unlimited
                runner.video_segment_num = 10000000
                runner.init_run()
                runner.init_run_segment(0, audio_array)
                latents = runner.run_segment(0)
                logger.info(f"warmup {name} end, latents shape: {latents.shape}")

    def _update_prompt(self, prompt):
        runner = self.clip_runners[self.cur_name]
        runner.input_info.prompt = prompt
        text_encoder_output = runner.run_text_encoder(runner.input_info)
        torch.cuda.empty_cache()
        gc.collect()
        runner.inputs["text_encoder_output"] = text_encoder_output

    @property
    def _segment_duration(self):
        return self.segment_durations[self.cur_name]

    @property
    def _prev_duration(self):
        return self.prev_durations[self.cur_name]

    def run_pipeline(self, input_info):
        try:
            va_controller = None
            self._run_input_encoder(input_info)
            va_controller = VAController(self)
            logger.info(f"init va_recorder: {va_controller.recorder} and va_reader: {va_controller.reader}")
            assert va_controller.reader is not None, "va_reader is required for parallel model runner"
            va_controller.start()

            segment_idx = 0
            fail_count, max_fail_count = 0, 10
            va_controller.before_control()
            self._warmup()
            logger.info(f"warmup done, start stream.....")
            self._switch_model("s2v_clip")

            while True:
                with ProfilingContext4DebugL1(f"stream segment get audio segment {segment_idx}"):
                    control = va_controller.next_control()

                    # blank -> voice
                    if control.action == "blank_to_voice":
                        self._change_prev_video(control.data)

                    # base image changed
                    elif control.action == "switch_image":
                        self._change_image_path(control.data)
                        self._run_input_encoder()
                        self._reset_prev_video()

                    # person perform some actions
                    elif control.action == "perform_action":
                        self._switch_model("f2v_clip")
                        self._update_prompt(control.data)

                    # bufferd stream is enough, sleep for a while
                    elif control.action == "wait":
                        time.sleep(0.01)
                        continue

                    audio_array, valid_duration = va_controller.reader.get_audio_segment(
                        fetch_duration=self._segment_duration,
                        prev_duration=self._prev_duration,
                    )
                    # for f2v clip, even audio is blank, should not truncate this frames
                    if self.cur_name == "f2v_clip":
                        valid_duration = self._segment_duration - self._prev_duration
                    if audio_array is None:
                        fail_count += 1
                        logger.warning(f"Failed to get audio chunk {fail_count} times")
                        if fail_count > max_fail_count:
                            raise Exception(f"Failed to get audio chunk {fail_count} times, stop reader")
                        continue

                with ProfilingContext4DebugL1(f"stream segment end2end {segment_idx}"):
                    try:
                        # logger.debug(f"stream segment end2end {segment_idx} start with {self.cur_name}, audio_array shape: {audio_array.shape}, valid_duration: {valid_duration}")
                        # reset pause signal
                        self.pause_signal = False
                        self.can_pause = valid_duration <= 1e-5
                        self._set_va_controller(va_controller)
                        self.init_run_segment(segment_idx, audio_array)
                        self.check_stop()
                        latents = self.run_segment(segment_idx)
                        self.check_stop()
                        self.end_run_segment_stream(latents, valid_duration=valid_duration)
                        self._broadcast_prev_video()
                        segment_idx += 1
                        fail_count = 0
                        # one action map one f2v_clip segment infer
                        if self.cur_name == "f2v_clip":
                            self._switch_model("s2v_clip")
                    except Exception as e:
                        if "pause_signal, pause running" in str(e):
                            logger.warning(f"model infer audio pause: {e}, should continue")
                        else:
                            raise
        finally:
            self._clear_va_controller()
            self._end_run()
            if va_controller is not None:
                va_controller.clear()
                va_controller = None