sla_kernel.py 10 KB
Newer Older
litzh's avatar
litzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import torch
import triton
import triton.language as tl


@triton.jit
def _attn_fwd(
    Q,
    K,
    V,
    qk_scale: tl.constexpr,
    topk: tl.constexpr,
    LUT,
    LSE,
    OS,
    L: tl.constexpr,
    M_BLOCKS: tl.constexpr,
    D: tl.constexpr,
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
):
    idx_m = tl.program_id(0).to(tl.int64)
    idx_bh = tl.program_id(1).to(tl.int64)

    qkv_offset = idx_bh * L * D
    lut_offset = (idx_bh * M_BLOCKS + idx_m) * topk
    lse_offset = idx_bh * L
    offs_m = idx_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    offs_d = tl.arange(0, D)

    Q_ptrs = Q + qkv_offset + offs_m[:, None] * D + offs_d[None, :]
    K_ptrs = K + qkv_offset + offs_n[None, :] * D + offs_d[:, None]
    V_ptrs = V + qkv_offset + offs_n[:, None] * D + offs_d[None, :]
    OS_ptrs = OS + qkv_offset + offs_m[:, None] * D + offs_d[None, :]
    LUT_ptr = LUT + lut_offset
    LSE_ptrs = LSE + lse_offset + offs_m

    m_i = tl.full([BLOCK_M], -float("inf"), dtype=tl.float32)
    l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
    o_s = tl.zeros([BLOCK_M, D], dtype=tl.float32)

    q = tl.load(Q_ptrs, mask=offs_m[:, None] < L)
    for block_idx in tl.range(topk):
        idx_n = tl.load(LUT_ptr + block_idx)
        n_mask = offs_n < L - idx_n * BLOCK_N

        k = tl.load(K_ptrs + idx_n * BLOCK_N * D, mask=n_mask[None, :])
        qk = tl.dot(q, k) * (qk_scale * 1.4426950408889634)  # = 1 / ln(2)
        if L - idx_n * BLOCK_N < BLOCK_N:
            qk = tl.where(n_mask[None, :], qk, float("-inf"))

        v = tl.load(V_ptrs + idx_n * BLOCK_N * D, mask=n_mask[:, None])
        local_m = tl.max(qk, 1)
        new_m = tl.maximum(m_i, local_m)
        qk = qk - new_m[:, None]

        p = tl.math.exp2(qk)
        l_ij = tl.sum(p, 1)
        alpha = tl.math.exp2(m_i - new_m)
        o_s = o_s * alpha[:, None]
        o_s += tl.dot(p.to(v.dtype), v)

        l_i = l_i * alpha + l_ij
        m_i = new_m

    o_s = o_s / l_i[:, None]
    tl.store(OS_ptrs, o_s.to(OS.type.element_ty), mask=offs_m[:, None] < L)

    m_i += tl.math.log2(l_i)
    tl.store(LSE_ptrs, m_i, mask=offs_m < L)


@triton.jit
def _attn_bwd_preprocess(
    OS,
    DOS,
    DELTAS,
    L,
    D: tl.constexpr,
    BLOCK_M: tl.constexpr,
):
    idx_m = tl.program_id(0).to(tl.int64)
    idx_bh = tl.program_id(1).to(tl.int64)

    OS += idx_bh * L * D
    DOS += idx_bh * L * D
    DELTAS += idx_bh * L

    offs_m = idx_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_d = tl.arange(0, D)

    o_s = tl.load(OS + offs_m[:, None] * D + offs_d[None, :], mask=offs_m[:, None] < L)
    do_s = tl.load(DOS + offs_m[:, None] * D + offs_d[None, :], mask=offs_m[:, None] < L)

    delta_s = tl.sum(o_s * do_s, axis=1).to(DELTAS.type.element_ty)
    tl.store(DELTAS + offs_m, delta_s, mask=offs_m < L)


# the main inner-loop logic for computing dQ
@triton.jit
def _attn_bwd_dq(
    Q,
    K,
    V,
    LSE,
    DELTAS,
    DOS,
    DQ,
    LUT,
    qk_scale: tl.constexpr,
    topk: tl.constexpr,
    L: tl.constexpr,
    M_BLOCKS: tl.constexpr,
    D: tl.constexpr,
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
):
    idx_m = tl.program_id(0).to(tl.int64)
    idx_bh = tl.program_id(1).to(tl.int64)

    offs_m = idx_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    offs_d = tl.arange(0, D)

    qkv_offset = idx_bh * L * D
    lse_offset = idx_bh * L
    lut_offset = (idx_bh * M_BLOCKS + idx_m) * topk

    Q_ptrs = Q + qkv_offset + offs_m[:, None] * D + offs_d[None, :]
    K_ptrs = K + qkv_offset + offs_n[:, None] * D + offs_d[None, :]
    V_ptrs = V + qkv_offset + offs_n[:, None] * D + offs_d[None, :]
    DQ_ptrs = DQ + qkv_offset + offs_m[:, None] * D + offs_d[None, :]
    DOS_ptrs = DOS + qkv_offset + offs_m[:, None] * D + offs_d[None, :]
    LSE_ptrs = LSE + lse_offset + offs_m
    DELTAS_ptrs = DELTAS + lse_offset + offs_m
    LUT_ptr = LUT + lut_offset

    # load Q, DOS, DOL, LSE, DELTA, S: they stay in SRAM throughout the inner loop.
    q = tl.load(Q_ptrs, mask=offs_m[:, None] < L)
    do_s = tl.load(DOS_ptrs, mask=offs_m[:, None] < L)
    delta_s = tl.load(DELTAS_ptrs, mask=offs_m < L)
    lse = tl.load(LSE_ptrs, mask=offs_m < L, other=float("inf"))

    dq = tl.zeros([BLOCK_M, D], dtype=tl.float32)
    for block_idx in tl.range(topk, num_stages=2):
        idx_n = tl.load(LUT_ptr + block_idx)
        n_mask = offs_n < L - idx_n * BLOCK_N

        k = tl.load(K_ptrs + idx_n * BLOCK_N * D, mask=n_mask[:, None])
        v = tl.load(V_ptrs + idx_n * BLOCK_N * D, mask=n_mask[:, None])
        qk = tl.dot(q, k.T) * (qk_scale * 1.4426950408889634)  # = 1 / ln(2)
        p = tl.math.exp2(qk - lse[:, None])
        p = tl.where(n_mask[None, :], p, 0.0)

        # Compute dP and dS.
        dp = tl.dot(do_s, v.T).to(tl.float32)
        ds = p * (dp - delta_s[:, None])
        # Compute dQ.
        dq += tl.dot(ds.to(k.dtype), k)
    tl.store(DQ_ptrs, dq * qk_scale, mask=offs_m[:, None] < L)


@triton.jit
def _attn_bwd_dkdv(
    Q,
    K,
    V,
    DOS,
    DK,
    DV,
    qk_scale,
    KBID,
    LSE,
    DELTAS,
    L: tl.constexpr,
    M_BLOCKS: tl.constexpr,
    N_BLOCKS: tl.constexpr,
    D: tl.constexpr,
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
    BLOCK_SLICE_FACTOR: tl.constexpr,
):
    BLOCK_M2: tl.constexpr = BLOCK_M // BLOCK_SLICE_FACTOR

    idx_n = tl.program_id(0).to(tl.int64)
    idx_bh = tl.program_id(1).to(tl.int64)

    offs_n = idx_n * BLOCK_N + tl.arange(0, BLOCK_N)
    offs_m = tl.arange(0, BLOCK_M2)
    offs_d = tl.arange(0, D)

    qkv_offset = idx_bh * L * D
    kbid_offset = idx_bh * M_BLOCKS * N_BLOCKS
    lse_offset = idx_bh * L

    Q_ptrs = Q + qkv_offset + offs_m[:, None] * D + offs_d[None, :]
    K_ptrs = K + qkv_offset + offs_n[:, None] * D + offs_d[None, :]
    V_ptrs = V + qkv_offset + offs_n[:, None] * D + offs_d[None, :]
    DOS_ptrs = DOS + qkv_offset + offs_m[:, None] * D + offs_d[None, :]
    DK_ptrs = DK + qkv_offset + offs_n[:, None] * D + offs_d[None, :]
    DV_ptrs = DV + qkv_offset + offs_n[:, None] * D + offs_d[None, :]
    LSE_ptrs = LSE + lse_offset + offs_m
    DELTAS_ptrs = DELTAS + lse_offset + offs_m
    KBID_ptr = KBID + kbid_offset + idx_n

    # load K, V and CK: they stay in SRAM throughout the inner loop.
    k = tl.load(K_ptrs, mask=offs_n[:, None] < L)
    v = tl.load(V_ptrs, mask=offs_n[:, None] < L)

    dk = tl.zeros([BLOCK_N, D], dtype=tl.float32)
    dv = tl.zeros([BLOCK_N, D], dtype=tl.float32)
    for idx_m in tl.range(0, L, BLOCK_M2):
        kbid = tl.load(KBID_ptr)
        if kbid == 1:
            m_mask = offs_m < L - idx_m
            q = tl.load(Q_ptrs, mask=m_mask[:, None])
            lse = tl.load(LSE_ptrs, mask=m_mask, other=float("inf"))
            qkT = tl.dot(k, q.T) * (qk_scale * 1.4426950408889634)  # = 1 / ln(2)
            pT = tl.math.exp2(qkT - lse[None, :])
            pT = tl.where(offs_n[:, None] < L, pT, 0.0)

            do = tl.load(DOS_ptrs, mask=m_mask[:, None])
            # Compute dV.
            dv += tl.dot(pT.to(do.dtype), do)
            delta = tl.load(DELTAS_ptrs, mask=m_mask)
            # Compute dP and dS.
            dpT = tl.dot(v, tl.trans(do))
            dsT = pT * (dpT - delta[None, :])
            dk += tl.dot(dsT.to(q.dtype), q)

        # Increment pointers
        Q_ptrs += BLOCK_M2 * D
        DOS_ptrs += BLOCK_M2 * D
        LSE_ptrs += BLOCK_M2
        DELTAS_ptrs += BLOCK_M2
        if (idx_m + BLOCK_M2) % BLOCK_M == 0:
            KBID_ptr += N_BLOCKS

    # Write back dK, dV and dCK
    tl.store(DK_ptrs, dk * qk_scale, mask=offs_n[:, None] < L)
    tl.store(DV_ptrs, dv, mask=offs_n[:, None] < L)


class _attention(torch.autograd.Function):
    @staticmethod
    def forward(ctx, q, k, v, k_block_id, lut, topk, BLOCK_M, BLOCK_N, qk_scale=None):
        assert q.is_contiguous() and k.is_contiguous() and v.is_contiguous()
        assert k_block_id.is_contiguous() and lut.is_contiguous()

        # We recommend the following two settings
        assert BLOCK_M == 64 or BLOCK_M == 128
        assert BLOCK_N == 64 or BLOCK_N == 128

        B, H, L, D = q.shape
        if qk_scale is None:
            qk_scale = D**-0.5

        M_BLOCKS = triton.cdiv(L, BLOCK_M)

        o_s = torch.empty_like(v)
        lse = torch.empty(q.shape[:-1], device=q.device, dtype=torch.float32)

        grid = (M_BLOCKS, B * H)
        _attn_fwd[grid](q, k, v, qk_scale, topk, lut, lse, o_s, L, M_BLOCKS, D, BLOCK_M, BLOCK_N, num_warps=4 if q.shape[-1] == 64 else 8, num_stages=3)

        ctx.save_for_backward(q, k, v, k_block_id, lut, lse, o_s)
        ctx.qk_scale = qk_scale
        ctx.topk = topk
        ctx.BLOCK_M = BLOCK_M
        ctx.BLOCK_N = BLOCK_N
        return o_s

    @staticmethod
    def backward(ctx, do_s):
        q, k, v, k_block_id, lut, lse, o_s = ctx.saved_tensors
        do_s = do_s.contiguous()

        BLOCK_M, BLOCK_N = ctx.BLOCK_M, ctx.BLOCK_N
        B, H, L, D = q.shape

        M_BLOCKS = triton.cdiv(L, BLOCK_M)
        N_BLOCKS = triton.cdiv(L, BLOCK_N)

        dq = torch.empty_like(q)
        dk = torch.empty_like(k)
        dv = torch.empty_like(v)
        delta_s = torch.empty_like(lse)

        grid = (M_BLOCKS, B * H)
        _attn_bwd_preprocess[grid](
            o_s,
            do_s,
            delta_s,
            L,
            D,
            BLOCK_M,
        )

        grid = (M_BLOCKS, B * H)
        _attn_bwd_dq[grid](
            q, k, v, lse, delta_s, do_s, dq, lut, ctx.qk_scale, ctx.topk, L, M_BLOCKS, D, BLOCK_M, BLOCK_N, num_warps=4 if q.shape[-1] == 64 else 8, num_stages=4 if q.shape[-1] == 64 else 5
        )

        grid = (N_BLOCKS, B * H)
        _attn_bwd_dkdv[grid](
            q,
            k,
            v,
            do_s,
            dk,
            dv,
            ctx.qk_scale,
            k_block_id,
            lse,
            delta_s,
            L,
            M_BLOCKS,
            N_BLOCKS,
            D,
            BLOCK_M,
            BLOCK_N,
            BLOCK_SLICE_FACTOR=BLOCK_M // 64,
            num_warps=4 if q.shape[-1] == 64 else 8,
            num_stages=4 if q.shape[-1] == 64 else 5,
        )

        return dq, dk, dv, None, None, None, None, None, None