model_utils.py 36.4 KB
Newer Older
litzh's avatar
litzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
import concurrent.futures
import glob
import os

from loguru import logger

try:
    from huggingface_hub import HfApi, list_repo_files

    HF_AVAILABLE = True
except ImportError:
    HfApi = None
    list_repo_files = None
    HF_AVAILABLE = False

try:
    from modelscope.hub.api import HubApi

    MS_AVAILABLE = True
except ImportError:
    HubApi = None
    MS_AVAILABLE = False
import gc
import importlib.util
import re

import psutil
import torch
from loguru import logger


def is_module_installed(module_name):
    """检查模块是否已安装"""
    spec = importlib.util.find_spec(module_name)
    return spec is not None


def get_available_quant_ops():
    """获取可用的量化算子"""
    available_ops = []

    triton_installed = is_module_installed("triton")
    if triton_installed:
        available_ops.append(("triton", True))
    else:
        available_ops.append(("triton", False))

    vllm_installed = is_module_installed("vllm")
    if vllm_installed:
        available_ops.append(("vllm", True))
    else:
        available_ops.append(("vllm", False))

    sgl_installed = is_module_installed("sgl_kernel")
    if sgl_installed:
        available_ops.append(("sgl", True))
    else:
        available_ops.append(("sgl", False))

    q8f_installed = is_module_installed("q8_kernels")
    if q8f_installed:
        available_ops.append(("q8f", True))
    else:
        available_ops.append(("q8f", False))

    # 检测 torch 选项:需要同时满足 hasattr(torch, "_scaled_mm") 和安装了 torchao
    torch_available = hasattr(torch, "_scaled_mm") and is_module_installed("torchao")
    if torch_available:
        available_ops.append(("torch", True))
    else:
        available_ops.append(("torch", False))

    return available_ops


def get_available_attn_ops():
    """获取可用的注意力算子"""
    available_ops = []

    vllm_installed = is_module_installed("flash_attn")
    if vllm_installed:
        available_ops.append(("flash_attn2", True))
    else:
        available_ops.append(("flash_attn2", False))

    sgl_installed = is_module_installed("flash_attn_interface")
    if sgl_installed:
        available_ops.append(("flash_attn3", True))
    else:
        available_ops.append(("flash_attn3", False))

    sage_installed = is_module_installed("sageattention")
    if sage_installed:
        available_ops.append(("sage_attn2", True))
    else:
        available_ops.append(("sage_attn2", False))

    sage3_installed = is_module_installed("sageattn3")
    if sage3_installed:
        available_ops.append(("sage_attn3", True))
    else:
        available_ops.append(("sage_attn3", False))

    torch_installed = is_module_installed("torch")
    if torch_installed:
        available_ops.append(("torch_sdpa", True))
    else:
        available_ops.append(("torch_sdpa", False))

    return available_ops


def get_gpu_memory(gpu_idx=0):
    """获取GPU显存(GB)"""
    if not torch.cuda.is_available():
        return 0
    with torch.cuda.device(gpu_idx):
        memory_info = torch.cuda.mem_get_info()
        total_memory = memory_info[1] / (1024**3)  # Convert bytes to GB
        return total_memory


def get_cpu_memory():
    """获取CPU可用内存(GB)"""
    available_bytes = psutil.virtual_memory().available
    return available_bytes / 1024**3


def cleanup_memory():
    """清理内存"""
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()


def is_fp8_supported_gpu():
    """检查GPU是否支持fp8"""
    if not torch.cuda.is_available():
        return False
    compute_capability = torch.cuda.get_device_capability(0)
    major, minor = compute_capability
    return (major == 8 and minor == 9) or (major >= 9)


def is_sm_greater_than_90():
    """检测计算能力是否大于 (9,0)"""
    if not torch.cuda.is_available():
        return False
    compute_capability = torch.cuda.get_device_capability(0)
    major, minor = compute_capability
    return (major, minor) > (9, 0)


def get_gpu_generation():
    """检测GPU系列,返回 '40' 表示40系,'30' 表示30系,None 表示其他"""
    if not torch.cuda.is_available():
        return None
    try:
        gpu_name = torch.cuda.get_device_name(0)
        gpu_name_lower = gpu_name.lower()

        # 检测40系显卡 (RTX 40xx, RTX 4060, RTX 4070, RTX 4080, RTX 4090等)
        if any(keyword in gpu_name_lower for keyword in ["rtx 40", "rtx40", "geforce rtx 40"]):
            # 进一步检查是40xx系列
            match = re.search(r"rtx\s*40\d+|40\d+", gpu_name_lower)
            if match:
                return "40"

        # 检测30系显卡 (RTX 30xx, RTX 3060, RTX 3070, RTX 3080, RTX 3090等)
        if any(keyword in gpu_name_lower for keyword in ["rtx 30", "rtx30", "geforce rtx 30"]):
            # 进一步检查是30xx系列
            match = re.search(r"rtx\s*30\d+|30\d+", gpu_name_lower)
            if match:
                return "30"

        return None
    except Exception as e:
        logger.warning(f"无法检测GPU系列: {e}")
        return None


# 模型列表缓存(避免每次从 HF 获取)
HF_MODELS_CACHE = {
    "lightx2v/wan2.1-Distill-Models": [],
    "lightx2v/wan2.1-Official-Models": [],
    "lightx2v/wan2.2-Distill-Models": [],
    "lightx2v/wan2.2-Official-Models": [],
    "lightx2v/Encoders": [],
    "lightx2v/Autoencoders": [],
    "lightx2v/Qwen-Image-Edit-2511-Lightning": [],
    "Qwen/Qwen-Image-Edit-2511": [],
    "lightx2v/Qwen-Image-2512-Lightning": [],
    "Qwen/Qwen-Image-2512": [],
    "lightx2v/Z-Image-Turbo-Quantized": [],
    "Tongyi-MAI/Z-Image-Turbo": [],
    "JunHowie/Qwen3-4B-GPTQ-Int4": [],
}


def process_files(files, repo_id=None):
    """处理文件列表,提取模型名称"""
    model_names = []
    seen_dirs = set()

    # 对于 Qwen/Qwen-Image-Edit-2511、Qwen/Qwen-Image-2512 和 Tongyi-MAI/Z-Image-Turbo 仓库,保留 vae 和 scheduler 目录
    is_qwen_image_repo = repo_id in ["Qwen/Qwen-Image-Edit-2511", "Qwen/Qwen-Image-2512", "Tongyi-MAI/Z-Image-Turbo"]
    # 对于 Qwen3 编码器仓库,整个仓库就是一个模型目录
    is_qwen3_encoder_repo = repo_id == "JunHowie/Qwen3-4B-GPTQ-Int4"

    for file in files:
        # 排除包含comfyui的文件
        if "comfyui" in file.lower():
            continue

        # 如果是顶层文件(不包含路径分隔符)
        if "/" not in file:
            # 对于 Qwen3 编码器仓库,不添加单个文件,只添加目录
            # 因为 Qwen3 编码器应该下载整个仓库目录
            if not is_qwen3_encoder_repo and file.endswith(".safetensors"):
                model_names.append(file)
        else:
            # 提取顶层目录名(支持_split目录)
            top_dir = file.split("/")[0]
            if top_dir not in seen_dirs:
                seen_dirs.add(top_dir)
                # 对于 Qwen 仓库,保留 vae 和 scheduler 目录
                if is_qwen_image_repo and top_dir.lower() in ["vae", "scheduler"]:
                    model_names.append(top_dir)
                # 对于 Qwen3 编码器仓库,保留所有顶层目录(排除 comfyui)
                elif is_qwen3_encoder_repo:
                    model_names.append(top_dir)
                # 支持safetensors文件目录和_split分block存储目录
                elif "_split" in top_dir or any(f.startswith(f"{top_dir}/") and f.endswith(".safetensors") for f in files):
                    model_names.append(top_dir)
    return sorted(set(model_names))


def load_hf_models_cache():
    """从 Hugging Face 加载模型列表并缓存,如果 HF 超时或失败,则尝试使用 ModelScope"""
    # 超时时间(秒)
    HF_TIMEOUT = 30

    for repo_id in HF_MODELS_CACHE.keys():
        files = None
        source = None

        # 首先尝试从 ModelScope 获取
        try:
            if MS_AVAILABLE:
                logger.info(f"Loading models from ModelScope {repo_id}...")
                api = HubApi()
                # ModelScope API 获取文件列表
                model_files = api.get_model_files(model_id=repo_id, recursive=True)
                # 提取文件路径
                files = [file["Path"] for file in model_files if file.get("Type") == "blob"]
                source = "ModelScope"
                logger.info(f"Successfully loaded models from ModelScope {repo_id}")
        except:  # noqa E722
            # 如果 ModelScope 失败,尝试从 Hugging Face 获取(带超时)
            if files is None and HF_AVAILABLE:
                logger.info(f"Loading models from Hugging Face {repo_id}...")
                api = HfApi()

                # 使用线程池执行器设置超时
                with concurrent.futures.ThreadPoolExecutor() as executor:
                    future = executor.submit(list_repo_files, repo_id=repo_id, repo_type="model")
                    files = future.result(timeout=HF_TIMEOUT)
                    source = "Hugging Face"

        # 处理文件列表
        if files:
            model_names = process_files(files, repo_id)
            HF_MODELS_CACHE[repo_id] = model_names
            logger.info(f"Loaded {len(HF_MODELS_CACHE[repo_id])} models from {source} {repo_id}")
        else:
            logger.warning(f"No files retrieved from {repo_id}, setting empty cache")
            HF_MODELS_CACHE[repo_id] = []


def get_hf_models(repo_id, prefix_filter=None, keyword_filter=None):
    """从缓存的模型列表中获取模型(不再实时从 HF 获取)"""
    if repo_id not in HF_MODELS_CACHE:
        return []

    models = HF_MODELS_CACHE[repo_id]

    if prefix_filter:
        models = [m for m in models if m.lower().startswith(prefix_filter.lower())]

    if keyword_filter:
        models = [m for m in models if keyword_filter.lower() in m.lower()]

    return models


def extract_op_name(op_str):
    """从格式化的操作符名称中提取原始名称"""
    if not op_str:
        return ""
    op_str = op_str.strip()
    if op_str.startswith("✅"):
        op_str = op_str[1:].strip()
    elif op_str.startswith("❌"):
        op_str = op_str[1:].strip()
    if "(" in op_str:
        op_str = op_str.split("(")[0].strip()
    return op_str


def scan_model_path_contents(model_path):
    """扫描 model_path 目录,返回可用的文件和子目录"""
    if not model_path or not os.path.exists(model_path):
        return {"dirs": [], "files": [], "safetensors_dirs": [], "pth_files": []}

    dirs = []
    files = []
    safetensors_dirs = []
    pth_files = []

    for item in os.listdir(model_path):
        item_path = os.path.join(model_path, item)
        if os.path.isdir(item_path):
            dirs.append(item)
            if glob.glob(os.path.join(item_path, "*.safetensors")):
                safetensors_dirs.append(item)
        elif os.path.isfile(item_path):
            files.append(item)
            if item.endswith(".pth"):
                pth_files.append(item)

    return {
        "dirs": sorted(dirs),
        "files": sorted(files),
        "safetensors_dirs": sorted(safetensors_dirs),
        "pth_files": sorted(pth_files),
    }


def check_model_exists(model_path, model_name):
    """检查模型是否已下载
    支持子目录路径,如 Qwen-Image-2512/qwen_image_2512_fp8_e4m3fn_scaled.safetensors
    """
    if not model_path or not os.path.exists(model_path):
        return False

    # 处理包含子目录路径的模型名(如 Qwen-Image-2512/qwen_image_2512_fp8_e4m3fn_scaled.safetensors)
    model_path_full = os.path.join(model_path, model_name)
    # 检查是否存在(文件或目录)
    if os.path.exists(model_path_full):
        return True

    # 额外检查:如果是 safetensors 文件,也检查同名目录(_split 目录)
    if model_name.endswith(".safetensors"):
        # 如果模型名包含子目录路径,提取文件名
        if "/" in model_name:
            base_name_with_subdir = model_name.replace(".safetensors", "")
            # 检查子目录下的 _split 目录
            split_dir = os.path.join(model_path, base_name_with_subdir + "_split")
            if os.path.exists(split_dir):
                return True
        else:
            # 检查同名目录(可能是分块存储)
            base_name = model_name.replace(".safetensors", "")
            split_dir = os.path.join(model_path, base_name + "_split")
            if os.path.exists(split_dir):
                return True

    return False


def format_model_choice(model_name, model_path, status_emoji=None):
    """格式化模型选项,添加下载状态标识"""
    if not model_name:
        return ""

    # 如果提供了状态 emoji,直接使用
    if status_emoji is not None:
        return f"{status_emoji} {model_name}"

    # 否则检查本地是否存在
    exists = check_model_exists(model_path, model_name)
    emoji = "✅" if exists else "❌"
    return f"{emoji} {model_name}"


def extract_model_name(formatted_name):
    """从格式化的选项名称中提取原始模型名称"""
    if not formatted_name:
        return ""
    # 移除开头的 emoji 和空格
    if formatted_name.startswith("✅ ") or formatted_name.startswith("❌ "):
        return formatted_name[2:].strip()
    return formatted_name.strip()


def sort_model_choices(models):
    """根据设备能力和模型类型对模型列表排序

    排序规则:
    - 如果设备支持 fp8:fp8+split > int8+split > fp8 > int8 > 其他
    - 如果设备不支持 fp8:int8+split > int8 > 其他
    """
    # 延迟导入避免循环依赖
    from utils.model_utils import is_fp8_supported_gpu

    fp8_supported = is_fp8_supported_gpu()

    def get_priority(name):
        name_lower = name.lower()
        if fp8_supported:
            # fp8 设备:fp8+split > int8+split > fp8 > int8 > 其他
            if "fp8" in name_lower and "_split" in name_lower:
                return 0  # 最高优先级
            elif "int8" in name_lower and "_split" in name_lower:
                return 1
            elif "fp8" in name_lower:
                return 2
            elif "int8" in name_lower:
                return 3
            else:
                return 4  # 其他
        else:
            # 非 fp8 设备:优先 int8+split,其次 int8
            if "int8" in name_lower and "_split" in name_lower:
                return 0  # 最高优先级
            elif "int8" in name_lower:
                return 1
            else:
                return 2  # 其他(fp8 已经被过滤掉了)

    return sorted(models, key=lambda x: (get_priority(x), x.lower()))


def detect_quant_scheme(model_name):
    """根据模型名字自动检测量化精度
    - 如果模型名字包含 "int8" → "int8"
    - 如果模型名字包含 "fp8" 且设备支持 → "fp8"
    - 否则返回 None(表示不使用量化)
    """
    if not model_name:
        return None
    # 延迟导入避免循环依赖
    from utils.model_utils import is_fp8_supported_gpu

    name_lower = model_name.lower()
    if "int8" in name_lower:
        return "int8"
    elif "fp8" in name_lower:
        if is_fp8_supported_gpu():
            return "fp8"
        else:
            # 设备不支持fp8,返回None(使用默认精度)
            return None
    return None


def is_distill_model_from_name(model_name):
    """根据模型名称判断是否是 distill 模型"""
    if not model_name:
        return None
    return "4step" in model_name.lower() or "8step" in model_name.lower()


def get_quant_scheme(quant_detected, quant_op_val):
    if quant_op_val == "torch":
        return f"{quant_detected}-torchao"
    elif quant_op_val == "triton":
        return f"{quant_detected}-triton"
    else:
        return f"{quant_detected}-{quant_op_val}"


def build_wan21(
    model_path_input,
    dit_path_input,
    t5_path_input,
    clip_path_input,
    vae_path_input,
    quant_op,
):
    wan21_config = {
        "dim": 5120,
        "eps": 1e-06,
        "ffn_dim": 13824,
        "freq_dim": 256,
        "in_dim": 36,
        "num_heads": 40,
        "num_layers": 40,
        "out_dim": 16,
        "text_len": 512,
    }

    dit_path_input = extract_model_name(dit_path_input) if dit_path_input else ""
    t5_path_input = extract_model_name(t5_path_input) if t5_path_input else ""
    clip_path_input = extract_model_name(clip_path_input) if clip_path_input else ""

    is_distill = is_distill_model_from_name(dit_path_input)
    if is_distill:
        wan21_config["model_cls"] = "wan2.1_distill"
    else:
        wan21_config["model_cls"] = "wan2.1"

    wan21_config["dit_quantized_ckpt"] = None
    wan21_config["dit_original_ckpt"] = None
    dit_quant_detected = detect_quant_scheme(dit_path_input)
    is_dit_quant = dit_quant_detected in ["fp8", "int8"]
    if is_dit_quant:
        wan21_config["dit_quantized"] = True
        wan21_config["dit_quant_scheme"] = get_quant_scheme(dit_quant_detected, quant_op)
        wan21_config["dit_quantized_ckpt"] = os.path.join(model_path_input, dit_path_input)
    else:
        wan21_config["dit_quantized"] = False
        wan21_config["dit_quant_scheme"] = "Default"
        wan21_config["dit_original_ckpt"] = os.path.join(model_path_input, dit_path_input)

    wan21_config["t5_original_ckpt"] = None
    wan21_config["t5_quantized_ckpt"] = None
    t5_quant_detected = detect_quant_scheme(t5_path_input)
    is_t5_quant = t5_quant_detected in ["fp8", "int8"]
    if is_t5_quant:
        wan21_config["t5_quantized"] = True
        wan21_config["t5_quant_scheme"] = get_quant_scheme(t5_quant_detected, quant_op)
        wan21_config["t5_quantized_ckpt"] = os.path.join(model_path_input, t5_path_input)
    else:
        wan21_config["t5_quantized"] = False
        wan21_config["t5_quant_scheme"] = "Default"
        wan21_config["t5_original_ckpt"] = os.path.join(model_path_input, t5_path_input)

    wan21_config["clip_original_ckpt"] = None
    wan21_config["clip_quantized_ckpt"] = None
    clip_quant_detected = detect_quant_scheme(clip_path_input)
    is_clip_quant = clip_quant_detected in ["fp8", "int8"]
    if is_clip_quant:
        wan21_config["clip_quantized"] = True  # 启用量化
        wan21_config["clip_quant_scheme"] = get_quant_scheme(clip_quant_detected, quant_op)
        wan21_config["clip_quantized_ckpt"] = os.path.join(model_path_input, clip_path_input)
    else:
        wan21_config["clip_quantized"] = False  # 禁用量化
        wan21_config["clip_quant_scheme"] = "Default"
        wan21_config["clip_original_ckpt"] = os.path.join(model_path_input, clip_path_input)

    # 提取 VAE 路径,移除状态符号
    vae_path_input = extract_model_name(vae_path_input) if vae_path_input else ""
    wan21_config["vae_path"] = os.path.join(model_path_input, vae_path_input) if vae_path_input else None
    wan21_config["model_path"] = model_path_input
    return wan21_config


def build_wan22(
    model_path_input,
    high_noise_path_input,
    low_noise_path_input,
    t5_path_input,
    vae_path_input,
    quant_op,
):
    wan22_config = {
        "dim": 5120,
        "eps": 1e-06,
        "ffn_dim": 13824,
        "freq_dim": 256,
        "in_dim": 36,
        "num_heads": 40,
        "num_layers": 40,
        "out_dim": 16,
        "text_len": 512,
    }
    """构建 Wan2.2 模型配置"""
    high_noise_path_input = extract_model_name(high_noise_path_input) if high_noise_path_input else ""
    low_noise_path_input = extract_model_name(low_noise_path_input) if low_noise_path_input else ""
    t5_path_input = extract_model_name(t5_path_input) if t5_path_input else ""

    is_distill = is_distill_model_from_name(high_noise_path_input)
    if is_distill:
        wan22_config["model_cls"] = "wan2.2_moe_distill"
    else:
        wan22_config["model_cls"] = "wan2.2_moe"

    wan22_config["high_noise_quantized_ckpt"] = None
    wan22_config["low_noise_quantized_ckpt"] = None
    wan22_config["high_noise_original_ckpt"] = None
    wan22_config["low_noise_original_ckpt"] = None
    dit_quant_detected = detect_quant_scheme(high_noise_path_input)
    is_dit_quant = dit_quant_detected in ["fp8", "int8"]
    if is_dit_quant:
        wan22_config["dit_quantized"] = True
        wan22_config["dit_quant_scheme"] = get_quant_scheme(dit_quant_detected, quant_op)
        wan22_config["high_noise_quant_scheme"] = get_quant_scheme(dit_quant_detected, quant_op)
        wan22_config["high_noise_quantized_ckpt"] = os.path.join(model_path_input, high_noise_path_input)
        wan22_config["low_noise_quantized_ckpt"] = os.path.join(model_path_input, low_noise_path_input)
    else:
        wan22_config["dit_quantized"] = False
        wan22_config["dit_quant_scheme"] = "Default"
        wan22_config["high_noise_quant_scheme"] = "Default"
        wan22_config["high_noise_original_ckpt"] = os.path.join(model_path_input, high_noise_path_input)
        wan22_config["low_noise_original_ckpt"] = os.path.join(model_path_input, low_noise_path_input)

    wan22_config["t5_original_ckpt"] = None
    wan22_config["t5_quantized_ckpt"] = None
    t5_quant_detected = detect_quant_scheme(t5_path_input)
    is_t5_quant = t5_quant_detected in ["fp8", "int8"]
    if is_t5_quant:
        wan22_config["t5_quantized"] = True
        wan22_config["t5_quant_scheme"] = get_quant_scheme(t5_quant_detected, quant_op)
        wan22_config["t5_quantized_ckpt"] = os.path.join(model_path_input, t5_path_input)
    else:
        wan22_config["t5_quantized"] = False
        wan22_config["t5_quant_scheme"] = "Default"
        wan22_config["t5_original_ckpt"] = os.path.join(model_path_input, t5_path_input)

    # 提取 VAE 路径,移除状态符号
    vae_path_input = extract_model_name(vae_path_input) if vae_path_input else ""
    wan22_config["vae_path"] = os.path.join(model_path_input, vae_path_input) if vae_path_input else None
    wan22_config["model_path"] = model_path_input
    return wan22_config


def build_qwen_image(
    model_type_input,
    model_path_input,
    qwen_image_dit_path_input,
    qwen_image_vae_path_input,
    qwen_image_scheduler_path_input,
    qwen25vl_encoder_path_input,
    quant_op,
):
    # 共同配置
    qwen_image_config = {
        "model_cls": "qwen_image",
        "attention_head_dim": 128,
        "axes_dims_rope": [16, 56, 56],
        "guidance_embeds": False,
        "in_channels": 64,
        "joint_attention_dim": 3584,
        "num_attention_heads": 24,
        "num_layers": 60,
        "out_channels": 16,
        "patch_size": 2,
        "attention_out_dim": 3072,
        "attention_dim_head": 128,
        "transformer_in_channels": 64,
    }

    # 根据模型类型设置不同配置
    if model_type_input == "Qwen-Image-Edit-2511":
        qwen_image_config.update(
            {
                "CONDITION_IMAGE_SIZE": 147456,
                "USE_IMAGE_ID_IN_PROMPT": True,
                "prompt_template_encode": "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n",
                "prompt_template_encode_start_idx": 64,
                "vae_scale_factor": 8,
                "zero_cond_t": True,
            }
        )
    elif model_type_input == "Qwen-Image-2512":
        qwen_image_config.update(
            {
                "prompt_template_encode": "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n",
                "prompt_template_encode_start_idx": 34,
                "zero_cond_t": False,
            }
        )
    else:
        raise ValueError(f"Invalid model type: {model_type_input}")

    """构建 Qwen-Image 模型配置"""
    qwen_image_dit_path_input = extract_model_name(qwen_image_dit_path_input) if qwen_image_dit_path_input else ""
    qwen_image_vae_path_input = extract_model_name(qwen_image_vae_path_input) if qwen_image_vae_path_input else ""
    qwen_image_scheduler_path_input = extract_model_name(qwen_image_scheduler_path_input) if qwen_image_scheduler_path_input else ""
    qwen25vl_encoder_path_input = extract_model_name(qwen25vl_encoder_path_input) if qwen25vl_encoder_path_input else ""

    # 确定子目录路径
    if model_type_input == "Qwen-Image-Edit-2511":
        model_subdir = "Qwen-Image-Edit-2511"
    elif model_type_input == "Qwen-Image-2512":
        model_subdir = "Qwen-Image-2512"
    else:
        model_subdir = ""

    # 处理包含子目录路径的输入(去掉子目录前缀,只保留文件名)
    if qwen_image_dit_path_input and "/" in qwen_image_dit_path_input:
        qwen_image_dit_path_input = qwen_image_dit_path_input.split("/")[-1]
    if qwen_image_vae_path_input and "/" in qwen_image_vae_path_input:
        qwen_image_vae_path_input = qwen_image_vae_path_input.split("/")[-1]
    if qwen_image_scheduler_path_input and "/" in qwen_image_scheduler_path_input:
        qwen_image_scheduler_path_input = qwen_image_scheduler_path_input.split("/")[-1]

    qwen_dit_quant_detected = detect_quant_scheme(qwen_image_dit_path_input)
    is_qwen_dit_quant = qwen_dit_quant_detected in ["fp8", "int8"]
    if is_qwen_dit_quant:
        qwen_image_config["dit_quantized"] = True
        qwen_image_config["dit_quant_scheme"] = get_quant_scheme(qwen_dit_quant_detected, quant_op)
        # 使用子目录路径构建完整路径
        dit_path = os.path.join(model_path_input, model_subdir, qwen_image_dit_path_input) if qwen_image_dit_path_input else None
        qwen_image_config["dit_quantized_ckpt"] = dit_path
        qwen_image_config["dit_original_ckpt"] = None
    else:
        qwen_image_config["dit_quantized"] = False
        qwen_image_config["dit_quant_scheme"] = "Default"
        # 使用子目录路径构建完整路径
        dit_path = os.path.join(model_path_input, model_subdir, qwen_image_dit_path_input) if qwen_image_dit_path_input else None
        qwen_image_config["dit_original_ckpt"] = dit_path
        qwen_image_config["dit_quantized_ckpt"] = None

    # VAE 和 Scheduler 路径也使用子目录
    vae_path = os.path.join(model_path_input, model_subdir, "vae") if qwen_image_vae_path_input else None
    scheduler_path = os.path.join(model_path_input, model_subdir, "scheduler") if qwen_image_scheduler_path_input else None
    qwen_image_config["vae_path"] = vae_path
    qwen_image_config["scheduler_path"] = scheduler_path
    qwen_image_config["qwen25vl_quantized"] = True
    qwen_image_config["qwen25vl_quant_scheme"] = "int4"
    qwen_image_config["qwen25vl_quantized_ckpt"] = os.path.join(model_path_input, qwen25vl_encoder_path_input) if qwen25vl_encoder_path_input else None
    qwen_image_config["qwen25vl_tokenizer_path"] = os.path.join(model_path_input, qwen25vl_encoder_path_input) if qwen25vl_encoder_path_input else None
    qwen_image_config["qwen25vl_processor_path"] = os.path.join(model_path_input, qwen25vl_encoder_path_input) if qwen25vl_encoder_path_input else None
    # 使用子目录路径作为 model_path
    if model_type_input == "Qwen-Image-Edit-2511":
        qwen_image_config["model_path"] = os.path.join(model_path_input, "Qwen-Image-Edit-2511")
    elif model_type_input == "Qwen-Image-2512":
        qwen_image_config["model_path"] = os.path.join(model_path_input, "Qwen-Image-2512")
    qwen_image_config["vae_scale_factor"] = 8
    return qwen_image_config


def build_z_image(
    model_path_input,
    z_image_dit_path_input,
    z_image_vae_path_input,
    z_image_scheduler_path_input,
    qwen3_encoder_path_input,
    quant_op,
):
    """构建 Z-Image-Turbo 模型配置"""
    # 共同配置
    z_image_config = {
        "all_f_patch_size": [1],
        "all_patch_size": [2],
        "axes_dims": [32, 48, 48],
        "axes_lens": [1536, 512, 512],
        "cap_feat_dim": 2560,
        "dim": 3840,
        "in_channels": 16,
        "n_heads": 30,
        "n_kv_heads": 30,
        "n_layers": 30,
        "n_refiner_layers": 2,
        "norm_eps": 1e-05,
        "qk_norm": True,
        "rope_theta": 256.0,
        "t_scale": 1000.0,
    }
    z_image_dit_path_input = extract_model_name(z_image_dit_path_input) if z_image_dit_path_input else ""
    z_image_vae_path_input = extract_model_name(z_image_vae_path_input) if z_image_vae_path_input else ""
    z_image_scheduler_path_input = extract_model_name(z_image_scheduler_path_input) if z_image_scheduler_path_input else ""
    qwen3_encoder_path_input = extract_model_name(qwen3_encoder_path_input) if qwen3_encoder_path_input else ""

    model_subdir = "Z-Image-Turbo"

    # 处理包含子目录路径的输入(去掉子目录前缀,只保留文件名)
    if z_image_dit_path_input and "/" in z_image_dit_path_input:
        z_image_dit_path_input = z_image_dit_path_input.split("/")[-1]
    if z_image_vae_path_input and "/" in z_image_vae_path_input:
        z_image_vae_path_input = z_image_vae_path_input.split("/")[-1]
    if z_image_scheduler_path_input and "/" in z_image_scheduler_path_input:
        z_image_scheduler_path_input = z_image_scheduler_path_input.split("/")[-1]

    z_image_dit_quant_detected = detect_quant_scheme(z_image_dit_path_input)
    is_z_image_dit_quant = z_image_dit_quant_detected in ["fp8", "int8"]
    if is_z_image_dit_quant:
        z_image_config["dit_quantized"] = True
        z_image_config["dit_quant_scheme"] = get_quant_scheme(z_image_dit_quant_detected, quant_op)
        # 使用子目录路径构建完整路径
        dit_path = os.path.join(model_path_input, model_subdir, z_image_dit_path_input) if z_image_dit_path_input else None
        z_image_config["dit_quantized_ckpt"] = dit_path
        z_image_config["dit_original_ckpt"] = None
    else:
        z_image_config["dit_quantized"] = False
        z_image_config["dit_quant_scheme"] = "Default"
        # 使用子目录路径构建完整路径
        dit_path = os.path.join(model_path_input, model_subdir, z_image_dit_path_input) if z_image_dit_path_input else None
        z_image_config["dit_original_ckpt"] = dit_path
        z_image_config["dit_quantized_ckpt"] = None

    # VAE 和 Scheduler 路径也使用子目录
    vae_path = os.path.join(model_path_input, model_subdir, "vae") if z_image_vae_path_input else None
    scheduler_path = os.path.join(model_path_input, model_subdir, "scheduler") if z_image_scheduler_path_input else None
    z_image_config["vae_path"] = vae_path
    z_image_config["scheduler_path"] = scheduler_path
    z_image_config["qwen3_quantized"] = True
    z_image_config["qwen3_quant_scheme"] = "int4"
    z_image_config["qwen3_quantized_ckpt"] = os.path.join(model_path_input, qwen3_encoder_path_input) if qwen3_encoder_path_input else None
    z_image_config["qwen3_tokenizer_path"] = os.path.join(model_path_input, qwen3_encoder_path_input) if qwen3_encoder_path_input else None
    z_image_config["qwen3_processor_path"] = os.path.join(model_path_input, qwen3_encoder_path_input) if qwen3_encoder_path_input else None
    # 使用子目录路径作为 model_path
    z_image_config["model_path"] = os.path.join(model_path_input, "Z-Image-Turbo")
    z_image_config["model_cls"] = "z_image"
    z_image_config["vae_scale_factor"] = 8
    z_image_config["patch_size"] = 2
    return z_image_config


def get_model_configs(
    model_type_input,
    model_path_input,
    dit_path_input,
    high_noise_path_input,
    low_noise_path_input,
    t5_path_input,
    clip_path_input,
    vae_path_input,
    qwen_image_dit_path_input,
    qwen_image_vae_path_input,
    qwen_image_scheduler_path_input,
    qwen25vl_encoder_path_input,
    z_image_dit_path_input,
    z_image_vae_path_input,
    z_image_scheduler_path_input,
    qwen3_encoder_path_input,
    quant_op,
    use_lora=None,
    lora_path=None,
    lora_strength=None,
    high_noise_lora_path=None,
    low_noise_lora_path=None,
    high_noise_lora_strength=None,
    low_noise_lora_strength=None,
):
    if model_path_input and model_path_input.strip():
        model_path_input = model_path_input.strip()

    # 构建 LoRA 配置(如果提供)
    lora_configs = None
    if use_lora:
        if model_type_input == "Wan2.2":
            lora_configs = []

            # 处理 high_noise LoRA
            if high_noise_lora_path and high_noise_lora_path.strip():
                high_noise_lora_full_path = os.path.join(model_path_input, "loras", high_noise_lora_path.strip())
                high_noise_strength = float(high_noise_lora_strength) if high_noise_lora_strength is not None else 1.0
                lora_configs.append(
                    {
                        "name": "high_noise_model",
                        "path": high_noise_lora_full_path,
                        "strength": high_noise_strength,
                    }
                )
            elif lora_path and lora_path.strip():
                # 如果没有分别提供,使用统一的 lora_path
                high_noise_lora_full_path = os.path.join(model_path_input, "loras", lora_path.strip())
                high_noise_strength = float(lora_strength) if lora_strength is not None else 1.0
                lora_configs.append(
                    {
                        "name": "high_noise_model",
                        "path": high_noise_lora_full_path,
                        "strength": high_noise_strength,
                    }
                )

            # 处理 low_noise LoRA
            if low_noise_lora_path and low_noise_lora_path.strip():
                low_noise_lora_full_path = os.path.join(model_path_input, "loras", low_noise_lora_path.strip())
                low_noise_strength = float(low_noise_lora_strength) if low_noise_lora_strength is not None else 1.0
                lora_configs.append(
                    {
                        "name": "low_noise_model",
                        "path": low_noise_lora_full_path,
                        "strength": low_noise_strength,
                    }
                )
            elif lora_path and lora_path.strip():
                # 如果没有分别提供,使用统一的 lora_path
                low_noise_lora_full_path = os.path.join(model_path_input, "loras", lora_path.strip())
                low_noise_strength = float(lora_strength) if lora_strength is not None else 1.0
                lora_configs.append(
                    {
                        "name": "low_noise_model",
                        "path": low_noise_lora_full_path,
                        "strength": low_noise_strength,
                    }
                )

            # 如果没有任何 LoRA 配置,设置为 None
            if not lora_configs:
                lora_configs = None
        else:
            # 其他模型类型(Wan2.1, Qwen-Image, Z-Image-Turbo)
            if lora_path and lora_path.strip():
                lora_full_path = os.path.join(model_path_input, "loras", lora_path.strip())
                lora_configs = [
                    {
                        "path": lora_full_path,
                        "strength": float(lora_strength) if lora_strength is not None else 1.0,
                    }
                ]

    if model_type_input == "Wan2.1":
        config = build_wan21(
            model_path_input,
            dit_path_input,
            t5_path_input,
            clip_path_input,
            vae_path_input,
            quant_op,
        )
        if lora_configs:
            config["lora_configs"] = lora_configs
        return config
    elif model_type_input == "Wan2.2":
        config = build_wan22(
            model_path_input,
            high_noise_path_input,
            low_noise_path_input,
            t5_path_input,
            vae_path_input,
            quant_op,
        )
        if lora_configs:
            config["lora_configs"] = lora_configs
        return config

    elif model_type_input in ["Qwen-Image-Edit-2511", "Qwen-Image-2512"]:
        config = build_qwen_image(
            model_type_input,
            model_path_input,
            qwen_image_dit_path_input,
            qwen_image_vae_path_input,
            qwen_image_scheduler_path_input,
            qwen25vl_encoder_path_input,
            quant_op,
        )
        if lora_configs:
            config["lora_configs"] = lora_configs
        return config
    elif model_type_input == "Z-Image-Turbo":
        config = build_z_image(
            model_path_input,
            z_image_dit_path_input,
            z_image_vae_path_input,
            z_image_scheduler_path_input,
            qwen3_encoder_path_input,
            quant_op,
        )
        if lora_configs:
            config["lora_configs"] = lora_configs
        return config