model_handlers.py 32.7 KB
Newer Older
litzh's avatar
litzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
import os
import shutil
import warnings

import gradio as gr
from loguru import logger
from utils.model_utils import check_model_exists, extract_model_name, format_model_choice, is_distill_model_from_name

try:
    from huggingface_hub import hf_hub_download
    from huggingface_hub import snapshot_download as hf_snapshot_download

    HF_AVAILABLE = True
except ImportError:
    HF_AVAILABLE = False

try:
    from modelscope.hub.snapshot_download import snapshot_download as ms_snapshot_download

    MS_AVAILABLE = True
except ImportError:
    MS_AVAILABLE = False


def download_model_from_hf(repo_id, model_name, model_path, progress=gr.Progress(), download_entire_repo=False):
    """从 Hugging Face 下载模型(支持文件和目录)

    Args:
        repo_id: 仓库 ID
        model_name: 模型名称(文件或目录名)
        model_path: 模型保存路径
        progress: Gradio 进度条
        download_entire_repo: 是否下载整个仓库(用于 Qwen3 编码器等)
    """
    if not HF_AVAILABLE:
        return f"❌ huggingface_hub 未安装,无法下载模型"

    progress(0, desc=f"开始从 Hugging Face 下载 {model_name}...")
    logger.info(f"开始从 Hugging Face {repo_id} 下载 {model_name}{model_path}")

    target_path = os.path.join(model_path, model_name)
    # 确保目标路径的父目录存在(如果 model_name 包含子目录路径,如 "Z-Image-Turbo/vae")
    os.makedirs(os.path.dirname(target_path) if "/" in model_name else model_path, exist_ok=True)
    os.makedirs(model_path, exist_ok=True)

    # 如果指定下载整个仓库,直接下载整个仓库到目标目录
    if download_entire_repo:
        progress(0.1, desc=f"下载整个仓库 {repo_id}...")
        logger.info(f"下载整个仓库 {repo_id}{target_path}")

        if os.path.exists(target_path):
            shutil.rmtree(target_path)

        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            hf_snapshot_download(
                repo_id=repo_id,
                local_dir=model_path,
                local_dir_use_symlinks=False,
                repo_type="model",
            )

        # 移动文件到正确位置
        repo_name = repo_id.split("/")[-1]
        source_dir = os.path.join(model_path, repo_name)
        if os.path.exists(source_dir) and source_dir != target_path:
            if os.path.exists(target_path):
                shutil.rmtree(target_path)
            shutil.move(source_dir, target_path)

        logger.info(f"整个仓库 {repo_id} 下载完成,已移动到 {target_path}")
        progress(1.0, desc=f"✅ {model_name} 下载完成")
        return f"✅ {model_name} 下载完成"

    # 判断是文件还是目录
    is_directory = not (model_name.endswith(".safetensors") or model_name.endswith(".pth"))

    if is_directory:
        # 下载目录
        progress(0.1, desc=f"下载目录 {model_name}...")
        logger.info(f"检测到 {model_name} 是目录,使用 snapshot_download")

        if os.path.exists(target_path):
            shutil.rmtree(target_path)

        # 从 model_name 中提取实际的目录名(如果包含子目录路径,如 "Z-Image-Turbo/scheduler" -> "scheduler")
        actual_dir_name = model_name.split("/")[-1] if "/" in model_name else model_name

        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            hf_snapshot_download(
                repo_id=repo_id,
                allow_patterns=[f"{actual_dir_name}/**"],
                local_dir=model_path,
                local_dir_use_symlinks=False,
                repo_type="model",
            )

        # 移动文件到正确位置
        repo_name = repo_id.split("/")[-1]
        # 先尝试从 repo_name/actual_dir_name 查找
        source_dir = os.path.join(model_path, repo_name, actual_dir_name)
        if os.path.exists(source_dir):
            # 确保目标路径的父目录存在
            os.makedirs(os.path.dirname(target_path), exist_ok=True)
            shutil.move(source_dir, target_path)
            repo_dir = os.path.join(model_path, repo_name)
            if os.path.exists(repo_dir) and not os.listdir(repo_dir):
                os.rmdir(repo_dir)
        else:
            # 尝试从 model_path/actual_dir_name 查找
            source_dir = os.path.join(model_path, actual_dir_name)
            if os.path.exists(source_dir) and source_dir != target_path:
                os.makedirs(os.path.dirname(target_path), exist_ok=True)
                shutil.move(source_dir, target_path)

        logger.info(f"目录 {model_name} 下载完成,已移动到 {target_path}")
    else:
        # 下载文件
        progress(0.1, desc=f"下载文件 {model_name}...")
        logger.info(f"检测到 {model_name} 是文件,使用 hf_hub_download")

        if os.path.exists(target_path):
            os.remove(target_path)

        # 如果 model_name 包含子目录路径,提取实际文件名
        actual_file_name = model_name.split("/")[-1] if "/" in model_name else model_name

        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            downloaded_path = hf_hub_download(
                repo_id=repo_id,
                filename=actual_file_name,  # 使用实际文件名,不包含子目录路径
                local_dir=model_path,
                local_dir_use_symlinks=False,
                repo_type="model",
            )

        # 如果 model_name 包含子目录路径,需要移动文件到子目录
        if "/" in model_name:
            target_dir = os.path.dirname(target_path)
            os.makedirs(target_dir, exist_ok=True)
            if os.path.exists(downloaded_path) and downloaded_path != target_path:
                shutil.move(downloaded_path, target_path)
                logger.info(f"文件 {model_name} 下载完成,保存到 {target_path}")
            else:
                logger.info(f"文件 {model_name} 下载完成,保存到 {downloaded_path}")
        else:
            logger.info(f"文件 {model_name} 下载完成,保存到 {downloaded_path}")

    progress(1.0, desc=f"✅ {model_name} 下载完成")
    return f"✅ {model_name} 下载完成"


def download_model_from_ms(repo_id, model_name, model_path, progress=gr.Progress(), download_entire_repo=False):
    """从 ModelScope 下载模型(支持文件和目录)

    Args:
        repo_id: 仓库 ID
        model_name: 模型名称(文件或目录名)
        model_path: 模型保存路径
        progress: Gradio 进度条
        download_entire_repo: 是否下载整个仓库(用于 Qwen3 编码器等)
    """
    if not MS_AVAILABLE:
        return f"❌ modelscope 未安装,无法下载模型"

    progress(0, desc=f"开始从 ModelScope 下载 {model_name}...")
    logger.info(f"开始从 ModelScope {repo_id} 下载 {model_name}{model_path}")

    target_path = os.path.join(model_path, model_name)
    # 确保目标路径的父目录存在(如果 model_name 包含子目录路径,如 "Z-Image-Turbo/vae")
    os.makedirs(os.path.dirname(target_path) if "/" in model_name else model_path, exist_ok=True)
    os.makedirs(model_path, exist_ok=True)

    # 临时目录用于下载
    temp_dir = os.path.join(model_path, f".temp_{model_name}")
    if os.path.exists(temp_dir):
        shutil.rmtree(temp_dir)

    # 如果指定下载整个仓库,直接下载整个仓库到目标目录
    if download_entire_repo:
        progress(0.1, desc=f"下载整个仓库 {repo_id}...")
        logger.info(f"下载整个仓库 {repo_id}{target_path}")

        if os.path.exists(target_path):
            shutil.rmtree(target_path)

        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            downloaded_path = ms_snapshot_download(
                model_id=repo_id,
                cache_dir=temp_dir,
            )

        # 移动文件到目标位置
        if os.path.exists(downloaded_path):
            if os.path.exists(target_path):
                shutil.rmtree(target_path)
            shutil.move(downloaded_path, target_path)

        # 清理临时目录
        if os.path.exists(temp_dir):
            shutil.rmtree(temp_dir)

        logger.info(f"整个仓库 {repo_id} 下载完成,已移动到 {target_path}")
        progress(1.0, desc=f"✅ {model_name} 下载完成")
        return f"✅ {model_name} 下载完成"

    # 判断是文件还是目录
    is_directory = not (model_name.endswith(".safetensors") or model_name.endswith(".pth"))
    is_file = not is_directory

    # 处理目录下载
    if is_directory:
        progress(0.1, desc=f"下载目录 {model_name}...")
        logger.info(f"检测到 {model_name} 是目录,使用 snapshot_download")

        if os.path.exists(target_path):
            shutil.rmtree(target_path)

        # 从 model_name 中提取实际的目录名(如果包含子目录路径,如 "Z-Image-Turbo/scheduler" -> "scheduler")
        actual_dir_name = model_name.split("/")[-1] if "/" in model_name else model_name

        # 使用 snapshot_download 下载目录(使用实际的目录名)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            downloaded_path = ms_snapshot_download(
                model_id=repo_id,
                cache_dir=temp_dir,
                allow_patterns=[f"{actual_dir_name}/**"],
            )

        # 移动文件到目标位置
        # ModelScope 下载后,文件在 downloaded_path/actual_dir_name
        source_dir = os.path.join(downloaded_path, actual_dir_name)
        if not os.path.exists(source_dir) and os.path.exists(downloaded_path):
            # 如果找不到,尝试从下载路径中查找
            for item in os.listdir(downloaded_path):
                item_path = os.path.join(downloaded_path, item)
                if actual_dir_name.lower() in item.lower() or (os.path.isdir(item_path) and item.lower() == actual_dir_name.lower()):
                    source_dir = item_path
                    break

        if os.path.exists(source_dir):
            # 确保目标路径的父目录存在
            os.makedirs(os.path.dirname(target_path), exist_ok=True)
            if os.path.exists(target_path):
                shutil.rmtree(target_path)
            shutil.move(source_dir, target_path)
            logger.info(f"目录 {model_name} 下载完成,已移动到 {target_path}")
        else:
            logger.error(f"无法找到下载的目录:{source_dir},下载路径:{downloaded_path}")

        # 清理临时目录
        if os.path.exists(temp_dir):
            shutil.rmtree(temp_dir)

        logger.info(f"目录 {model_name} 下载完成,保存到 {target_path}")
    # 处理文件下载
    elif is_file:
        progress(0.1, desc=f"下载文件 {model_name}...")
        logger.info(f"检测到 {model_name} 是文件,使用 snapshot_download")

        if os.path.exists(target_path):
            os.remove(target_path)
        os.makedirs(os.path.dirname(target_path) if "/" in model_name else model_path, exist_ok=True)

        # 如果 model_name 包含子目录路径,提取实际文件名用于 allow_patterns
        actual_file_name = model_name.split("/")[-1] if "/" in model_name else model_name

        # 使用 snapshot_download 下载文件
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            downloaded_path = ms_snapshot_download(
                model_id=repo_id,
                cache_dir=temp_dir,
                allow_patterns=[actual_file_name],  # 只使用文件名,不包含子目录路径
            )

        # 查找并移动文件
        # 如果 model_name 包含子目录路径(如 "Qwen-Image-2512/file.safetensors"),提取文件名
        actual_file_name = model_name.split("/")[-1] if "/" in model_name else model_name

        # 先尝试完整路径
        source_file = os.path.join(downloaded_path, model_name)
        if not os.path.exists(source_file):
            # 尝试直接使用文件名
            source_file = os.path.join(downloaded_path, actual_file_name)
            if not os.path.exists(source_file):
                # 如果找不到,从下载路径中递归查找
                for root, dirs, files_list in os.walk(downloaded_path):
                    if actual_file_name in files_list:
                        source_file = os.path.join(root, actual_file_name)
                        break

        if os.path.exists(source_file):
            # 确保目标目录存在
            target_dir = os.path.dirname(target_path)
            if target_dir and not os.path.exists(target_dir):
                os.makedirs(target_dir, exist_ok=True)
            shutil.move(source_file, target_path)
            logger.info(f"文件 {model_name} 下载完成,保存到 {target_path}")
        else:
            logger.error(f"❌ 下载失败:无法找到文件 {actual_file_name}{downloaded_path}")
            return f"❌ 下载失败:无法找到文件 {actual_file_name}"

        # 清理临时目录
        if os.path.exists(temp_dir):
            shutil.rmtree(temp_dir)
    else:
        return f"❌ 无法找到 {model_name}:既不是文件也不是目录"

    progress(1.0, desc=f"✅ {model_name} 下载完成")
    return f"✅ {model_name} 下载完成"


def download_model(repo_id, model_name, model_path, download_source="huggingface", progress=gr.Progress(), download_entire_repo=False):
    """统一的下载函数,根据下载源选择 Hugging Face 或 ModelScope

    Args:
        repo_id: 仓库 ID
        model_name: 模型名称(文件或目录名)
        model_path: 模型保存路径
        download_source: 下载源 ("huggingface" 或 "modelscope")
        progress: Gradio 进度条
        download_entire_repo: 是否下载整个仓库(用于 Qwen3 编码器等)
    """
    if download_source == "modelscope":
        return download_model_from_ms(repo_id, model_name, model_path, progress, download_entire_repo)
    else:
        return download_model_from_hf(repo_id, model_name, model_path, progress, download_entire_repo)


def get_repo_id_for_model(model_type, is_distill, model_category="dit"):
    """根据模型类型、是否 distill 和模型类别获取对应的 Hugging Face 仓库 ID"""
    if model_category == "dit":
        if model_type == "wan2.1":
            return "lightx2v/wan2.1-Distill-Models" if is_distill else "lightx2v/wan2.1-Official-Models"
        elif model_type == "Qwen-Image-Edit-2511":
            return "lightx2v/Qwen-Image-Edit-2511-Lightning"
        else:  # wan2.2
            return "lightx2v/wan2.2-Distill-Models" if is_distill else "lightx2v/wan2.2-Official-Models"
    elif model_category == "high_noise" or model_category == "low_noise":
        if is_distill:
            return "lightx2v/wan2.2-Distill-Models"
        else:
            return "lightx2v/wan2.2-Official-Models"
    elif model_category == "t5" or model_category == "clip":
        return "lightx2v/Encoders"
    elif model_category == "qwen25vl":
        return "lightx2v/Encoders"
    elif model_category == "vae":
        return "lightx2v/Autoencoders"
    elif model_category == "qwen_image_vae" or model_category == "qwen_image_scheduler":
        return "Qwen/Qwen-Image-Edit-2511"
    return None


MODEL_CONFIG_MAP = {
    "dit": {"get_repo_id": lambda model_type, is_distill, _: get_repo_id_for_model(model_type, is_distill, "dit")},
    "high_noise": {"get_repo_id": lambda model_type, is_distill, _: get_repo_id_for_model("wan2.2", is_distill, "high_noise")},
    "low_noise": {"get_repo_id": lambda model_type, is_distill, _: get_repo_id_for_model("wan2.2", is_distill, "low_noise")},
    "t5": {"get_repo_id": lambda _, __, ___: get_repo_id_for_model(None, None, "t5")},
    "clip": {"get_repo_id": lambda _, __, ___: get_repo_id_for_model(None, None, "clip")},
    "vae": {"get_repo_id": lambda _, __, ___: get_repo_id_for_model(None, None, "vae")},
    "vae_encoder": {"get_repo_id": lambda _, __, ___: get_repo_id_for_model(None, None, "vae")},  # 兼容旧代码
    "vae_decoder": {"get_repo_id": lambda _, __, ___: get_repo_id_for_model(None, None, "vae")},  # 兼容旧代码
    "qwen_image_dit": {"get_repo_id": lambda _, __, ___: "lightx2v/Qwen-Image-Edit-2511-Lightning"},
    "qwen_image_vae": {"get_repo_id": lambda _, __, ___: "Qwen/Qwen-Image-Edit-2511"},
    "qwen_image_scheduler": {"get_repo_id": lambda _, __, ___: "Qwen/Qwen-Image-Edit-2511"},
    "qwen_image_2512_dit": {"get_repo_id": lambda _, __, ___: "lightx2v/Qwen-Image-2512-Lightning"},
    "qwen_image_2512_vae": {"get_repo_id": lambda _, __, ___: "Qwen/Qwen-Image-2512"},
    "qwen_image_2512_scheduler": {"get_repo_id": lambda _, __, ___: "Qwen/Qwen-Image-2512"},
    "z_image_turbo_dit": {"get_repo_id": lambda _, __, ___: "lightx2v/Z-Image-Turbo-Quantized"},
    "z_image_turbo_vae": {"get_repo_id": lambda _, __, ___: "Tongyi-MAI/Z-Image-Turbo"},
    "z_image_turbo_scheduler": {"get_repo_id": lambda _, __, ___: "Tongyi-MAI/Z-Image-Turbo"},
    "qwen3_encoder": {"get_repo_id": lambda _, __, ___: "JunHowie/Qwen3-4B-GPTQ-Int4"},
    "qwen25vl_encoder": {"get_repo_id": lambda _, __, ___: "lightx2v/Encoders"},
}

# Tokenizer 配置
TOKENIZER_CONFIG = {
    "t5": {"name": "google", "repo_id": get_repo_id_for_model(None, None, "t5")},
    "clip": {"name": "xlm-roberta-large", "repo_id": get_repo_id_for_model(None, None, "clip")},
}


def update_model_status(model_path_val, model_name, model_category, model_type_val=None):
    """通用的模型状态更新函数

    Args:
        model_path_val: 模型路径
        model_name: 模型名称(可能包含状态标识)
        model_category: 模型类别 (dit, high_noise, low_noise, t5, clip, vae, qwen_image_dit, etc.)
        model_type_val: 模型类型 (wan2.1, wan2.2, Qwen-Image-Edit-2511),某些类别需要此参数

    Returns:
        gr.update: 下载按钮的可见性更新
    """
    if not model_name:
        return gr.update(visible=False)

    actual_name = extract_model_name(model_name)

    # 对于 Qwen3 编码器,检查整个仓库目录是否存在
    if model_category == "qwen3_encoder":
        # Qwen3 编码器检查整个仓库目录 Qwen3-4B-GPTQ-Int4 是否存在
        repo_id = "JunHowie/Qwen3-4B-GPTQ-Int4"
        repo_name = repo_id.split("/")[-1]  # "Qwen3-4B-GPTQ-Int4"
        exists = check_model_exists(model_path_val, repo_name)
        return gr.update(visible=not exists)

    exists = check_model_exists(model_path_val, actual_name)
    return gr.update(visible=not exists)


def update_tokenizer_status(model_path_val, tokenizer_type):
    """更新 Tokenizer 状态

    Args:
        model_path_val: 模型路径
        tokenizer_type: tokenizer 类型 ("t5" 或 "clip")

    Returns:
        tuple: (dropdown_update, btn_visible_update)
    """
    config = TOKENIZER_CONFIG.get(tokenizer_type)
    if not config:
        return gr.update(), gr.update(visible=False)

    tokenizer_name = config["name"]
    exists = check_model_exists(model_path_val, tokenizer_name)

    if exists:
        status_text = f"{tokenizer_name} ✅"
        return gr.update(value=status_text), gr.update(visible=False)
    else:
        status_text = f"{tokenizer_name} ❌"
        return gr.update(value=status_text), gr.update(visible=True)


def download_model_handler(model_path_val, model_name, model_category, download_source_val, get_choices_func=None, model_type_val=None, task_type_val=None, progress=gr.Progress()):
    """通用的模型下载处理函数

    Args:
        model_path_val: 模型路径
        model_name: 模型名称(可能包含状态标识)
        model_category: 模型类别
        download_source_val: 下载源 ("huggingface" 或 "modelscope")
        get_choices_func: 获取模型选项列表的函数(可选)
        model_type_val: 模型类型(某些类别需要)
        task_type_val: 任务类型(某些类别需要)
        progress: Gradio 进度条

    Returns:
        tuple: (status_update, btn_visible_update, choices_update)
    """
    if not model_name:
        return gr.update(value="请先选择模型"), gr.update(visible=False), gr.update()

    actual_name = extract_model_name(model_name)

    # 获取 repo_id
    config = MODEL_CONFIG_MAP.get(model_category)
    if not config:
        return gr.update(value=f"未知的模型类别: {model_category}"), gr.update(visible=False), gr.update()

    is_distill = False
    if model_category in ["dit", "high_noise", "low_noise"]:
        is_distill = is_distill_model_from_name(actual_name)

    repo_id = config["get_repo_id"](model_type_val, is_distill, model_category)

    # 对于 Qwen3 编码器,始终下载整个仓库目录
    if model_category == "qwen3_encoder":
        # Qwen3 编码器下载整个仓库,使用仓库名作为目录名
        repo_name = repo_id.split("/")[-1]  # "Qwen3-4B-GPTQ-Int4"
        actual_name = repo_name

    # 对于 VAE、Scheduler 和 Diffusion 模型,需要下载到子目录
    elif model_category in [
        "qwen_image_vae",
        "qwen_image_scheduler",
        "qwen_image_dit",
        "qwen_image_2512_vae",
        "qwen_image_2512_scheduler",
        "qwen_image_2512_dit",
        "z_image_turbo_vae",
        "z_image_turbo_scheduler",
        "z_image_turbo_dit",
    ]:
        # 确定模型子目录名称
        if model_category in ["qwen_image_vae", "qwen_image_scheduler", "qwen_image_dit"]:
            model_subdir = "Qwen-Image-Edit-2511"
        elif model_category in ["qwen_image_2512_vae", "qwen_image_2512_scheduler", "qwen_image_2512_dit"]:
            model_subdir = "Qwen-Image-2512"
        elif model_category in ["z_image_turbo_vae", "z_image_turbo_scheduler", "z_image_turbo_dit"]:
            model_subdir = "Z-Image-Turbo"

        # 如果需要在子目录下载,修改 actual_name 为子目录路径
        # 如果 actual_name 已经包含子目录路径,则提取文件名
        if "/" in actual_name:
            # 提取文件名(去掉子目录前缀)
            parts = actual_name.split("/")
            if len(parts) > 1:
                actual_name = parts[-1]
        # 添加子目录路径前缀
        actual_name = f"{model_subdir}/{actual_name}"

    # 下载模型
    # 对于 Qwen3 编码器,下载整个仓库
    download_entire_repo = model_category == "qwen3_encoder"
    result = download_model(repo_id, actual_name, model_path_val, download_source_val, progress, download_entire_repo)

    # 下载完成后,直接标记为已存在(使用 ✅ 状态),避免文件系统同步延迟导致的状态检查失败
    formatted_name_with_status = format_model_choice(actual_name, model_path_val, status_emoji="✅")

    # 更新状态(下载完成后,模型应该存在,所以隐藏下载按钮)
    btn_visible = gr.update(visible=False)

    # 更新选项列表(如果提供了获取选项的函数)
    choices_update = gr.update()
    if get_choices_func:
        try:
            if model_category in ["dit"] and model_type_val and task_type_val:
                choices = get_choices_func(model_path_val, model_type_val, task_type_val)
            elif model_category in ["high_noise", "low_noise"] and task_type_val:
                choices = get_choices_func(model_path_val, "wan2.2", task_type_val)
            else:
                choices = get_choices_func(model_path_val)
            # 使用带状态标识的格式化名称
            choices_update = gr.update(choices=choices, value=formatted_name_with_status)
        except Exception as e:
            # 如果获取选项失败,只更新值
            choices_update = gr.update(value=formatted_name_with_status)

    return gr.update(value=result), btn_visible, choices_update


def download_tokenizer_handler(model_path_val, tokenizer_type, download_source_val, progress=gr.Progress()):
    """下载 Tokenizer 处理函数

    Args:
        model_path_val: 模型路径
        tokenizer_type: tokenizer 类型 ("t5" 或 "clip")
        download_source_val: 下载源
        progress: Gradio 进度条

    Returns:
        tuple: (status_update, dropdown_update, btn_visible_update)
    """
    config = TOKENIZER_CONFIG.get(tokenizer_type)
    if not config:
        return gr.update(value=f"未知的 tokenizer 类型: {tokenizer_type}"), gr.update(), gr.update(visible=False)

    tokenizer_name = config["name"]
    repo_id = config["repo_id"]

    result = download_model(repo_id, tokenizer_name, model_path_val, download_source_val, progress)
    dropdown_update, btn_visible = update_tokenizer_status(model_path_val, tokenizer_type)

    return gr.update(value=result), dropdown_update, btn_visible


def create_update_status_wrappers():
    """创建所有模型状态更新的包装函数

    Returns:
        dict: 包含所有 update 函数的字典
    """

    def update_dit_status(model_path_val, model_name, model_type_val):
        return update_model_status(model_path_val, model_name, "dit", model_type_val)

    def update_t5_model_status(model_path_val, model_name):
        return update_model_status(model_path_val, model_name, "t5")

    def update_t5_tokenizer_status(model_path_val):
        return update_tokenizer_status(model_path_val, "t5")

    def update_clip_model_status(model_path_val, model_name):
        return update_model_status(model_path_val, model_name, "clip")

    def update_clip_tokenizer_status(model_path_val):
        return update_tokenizer_status(model_path_val, "clip")

    def update_vae_status(model_path_val, model_name):
        return update_model_status(model_path_val, model_name, "vae")

    def update_vae_encoder_status(model_path_val, model_name):
        return update_model_status(model_path_val, model_name, "vae")  # 兼容旧代码,统一使用 vae

    def update_vae_decoder_status(model_path_val, model_name):
        return update_model_status(model_path_val, model_name, "vae")  # 兼容旧代码,统一使用 vae

    def update_high_noise_status(model_path_val, model_name):
        return update_model_status(model_path_val, model_name, "high_noise", "wan2.2")

    def update_low_noise_status(model_path_val, model_name):
        return update_model_status(model_path_val, model_name, "low_noise", "wan2.2")

    def update_qwen_image_dit_status(model_path_val, model_name):
        return update_model_status(model_path_val, model_name, "qwen_image_dit")

    def update_qwen_image_vae_status(model_path_val, model_name):
        return update_model_status(model_path_val, model_name, "qwen_image_vae")

    def update_qwen_image_scheduler_status(model_path_val, model_name):
        return update_model_status(model_path_val, model_name, "qwen_image_scheduler")

    def update_qwen25vl_encoder_status(model_path_val, model_name):
        return update_model_status(model_path_val, model_name, "qwen25vl_encoder")

    return {
        "update_dit_status": update_dit_status,
        "update_t5_model_status": update_t5_model_status,
        "update_t5_tokenizer_status": update_t5_tokenizer_status,
        "update_clip_model_status": update_clip_model_status,
        "update_clip_tokenizer_status": update_clip_tokenizer_status,
        "update_vae_status": update_vae_status,
        "update_vae_encoder_status": update_vae_encoder_status,  # 兼容旧代码
        "update_vae_decoder_status": update_vae_decoder_status,  # 兼容旧代码
        "update_high_noise_status": update_high_noise_status,
        "update_low_noise_status": update_low_noise_status,
        "update_qwen_image_dit_status": update_qwen_image_dit_status,
        "update_qwen_image_vae_status": update_qwen_image_vae_status,
        "update_qwen_image_scheduler_status": update_qwen_image_scheduler_status,
        "update_qwen25vl_encoder_status": update_qwen25vl_encoder_status,
    }


def create_download_wrappers(get_choices_funcs):
    """创建所有模型下载的包装函数

    Args:
        get_choices_funcs: 包含所有 get_choices 函数的字典

    Returns:
        dict: 包含所有 download 函数的字典
    """

    def download_dit_model(model_path_val, model_name, model_type_val, task_type_val, download_source_val, progress=gr.Progress()):
        return download_model_handler(
            model_path_val,
            model_name,
            "dit",
            download_source_val,
            get_choices_func=get_choices_funcs.get("get_dit_choices"),
            model_type_val=model_type_val,
            task_type_val=task_type_val,
            progress=progress,
        )

    def download_t5_model(model_path_val, model_name, download_source_val, progress=gr.Progress()):
        return download_model_handler(model_path_val, model_name, "t5", download_source_val, get_choices_func=get_choices_funcs.get("get_t5_model_choices"), progress=progress)

    def download_t5_tokenizer(model_path_val, download_source_val, progress=gr.Progress()):
        return download_tokenizer_handler(model_path_val, "t5", download_source_val, progress)

    def download_clip_model(model_path_val, model_name, download_source_val, progress=gr.Progress()):
        return download_model_handler(model_path_val, model_name, "clip", download_source_val, get_choices_func=get_choices_funcs.get("get_clip_model_choices"), progress=progress)

    def download_clip_tokenizer(model_path_val, download_source_val, progress=gr.Progress()):
        return download_tokenizer_handler(model_path_val, "clip", download_source_val, progress)

    def download_vae(model_path_val, model_name, download_source_val, progress=gr.Progress()):
        return download_model_handler(model_path_val, model_name, "vae", download_source_val, get_choices_func=get_choices_funcs.get("get_vae_choices"), progress=progress)

    def download_vae_encoder(model_path_val, model_name, download_source_val, progress=gr.Progress()):
        return download_vae(model_path_val, model_name, download_source_val, progress)  # 兼容旧代码

    def download_vae_decoder(model_path_val, model_name, download_source_val, progress=gr.Progress()):
        return download_vae(model_path_val, model_name, download_source_val, progress)  # 兼容旧代码

    def download_high_noise_model(model_path_val, model_name, task_type_val, download_source_val, progress=gr.Progress()):
        return download_model_handler(
            model_path_val,
            model_name,
            "high_noise",
            download_source_val,
            get_choices_func=get_choices_funcs.get("get_high_noise_choices"),
            model_type_val="wan2.2",
            task_type_val=task_type_val,
            progress=progress,
        )

    def download_low_noise_model(model_path_val, model_name, task_type_val, download_source_val, progress=gr.Progress()):
        return download_model_handler(
            model_path_val,
            model_name,
            "low_noise",
            download_source_val,
            get_choices_func=get_choices_funcs.get("get_low_noise_choices"),
            model_type_val="wan2.2",
            task_type_val=task_type_val,
            progress=progress,
        )

    def download_qwen_image_dit(model_path_val, model_name, download_source_val, progress=gr.Progress()):
        return download_model_handler(model_path_val, model_name, "qwen_image_dit", download_source_val, get_choices_func=get_choices_funcs.get("get_qwen_image_dit_choices"), progress=progress)

    def download_qwen_image_vae(model_path_val, model_name, download_source_val, progress=gr.Progress()):
        return download_model_handler(model_path_val, model_name, "qwen_image_vae", download_source_val, get_choices_func=get_choices_funcs.get("get_qwen_image_vae_choices"), progress=progress)

    def download_qwen_image_scheduler(model_path_val, model_name, download_source_val, progress=gr.Progress()):
        return download_model_handler(
            model_path_val, model_name, "qwen_image_scheduler", download_source_val, get_choices_func=get_choices_funcs.get("get_qwen_image_scheduler_choices"), progress=progress
        )

    def download_qwen25vl_encoder(model_path_val, model_name, download_source_val, progress=gr.Progress()):
        return download_model_handler(model_path_val, model_name, "qwen25vl_encoder", download_source_val, get_choices_func=get_choices_funcs.get("get_qwen25vl_encoder_choices"), progress=progress)

    return {
        "download_dit_model": download_dit_model,
        "download_t5_model": download_t5_model,
        "download_t5_tokenizer": download_t5_tokenizer,
        "download_clip_model": download_clip_model,
        "download_clip_tokenizer": download_clip_tokenizer,
        "download_vae": download_vae,
        "download_vae_encoder": download_vae_encoder,  # 兼容旧代码
        "download_vae_decoder": download_vae_decoder,  # 兼容旧代码
        "download_high_noise_model": download_high_noise_model,
        "download_low_noise_model": download_low_noise_model,
        "download_qwen_image_dit": download_qwen_image_dit,
        "download_qwen_image_vae": download_qwen_image_vae,
        "download_qwen_image_scheduler": download_qwen_image_scheduler,
        "download_qwen25vl_encoder": download_qwen25vl_encoder,
    }