"vscode:/vscode.git/clone" did not exist on "12fc1233e0b43d28b0a5b97e9da3fe274a89754c"
benchmark_prefix_caching.py 10.7 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Benchmark the efficiency of prefix caching.

This script allows you to benchmark the performance of
a model with and without prefix caching using either fixed prompts
or prompts sampled from the ShareGPT dataset.

Fixed example usage:
    python benchmark_prefix_caching.py \
        --model meta-llama/Llama-2-7b-chat-hf \
        --enable-prefix-caching \
        --num-prompts 1 \
        --repeat-count 100 \
        --input-length-range 128:256

ShareGPT example usage:
    # This command samples 20 prompts with input lengths
    # between 128 and 256 tokens from the ShareGPT dataset,
    # then replicates each prompt 5 times.
    python benchmark_prefix_caching.py \
        --model meta-llama/Llama-2-7b-chat-hf \
        --dataset-path /path/to/ShareGPT_V3_unfiltered_cleaned_split.json \
        --enable-prefix-caching \
        --num-prompts 20 \
        --repeat-count 5 \
        --input-length-range 128:256
"""

import dataclasses
import json
import random
import time
from typing import Optional

from transformers import PreTrainedTokenizerBase

from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.utils import FlexibleArgumentParser
# import triton


try:
    from vllm.transformers_utils.tokenizer import get_tokenizer
except ImportError:
    from backend_request_func import get_tokenizer

# triton_version = triton.__version__
# if triton_version.startswith("2.1"):
#     from triton.common.backend import compute_core_version_key
# elif triton_version.startswith("3.0"):
#     from triton.compiler.compiler import triton_key
# else:
#     print(f"TRITON version {triton_version} is not specifically handled.")


PROMPT = "You are a helpful assistant in recognizes the content of tables in markdown format. Here is a table as fellows. You need to answer my question about the table.\n# Table\n|Opening|Opening|Sl. No.|Film|Cast|Director|Music Director|Notes|\n|----|----|----|----|----|----|----|----|\n|J A N|9|1|Agni Pushpam|Jayabharathi, Kamalahasan|Jeassy|M. K. Arjunan||\n|J A N|16|2|Priyamvada|Mohan Sharma, Lakshmi, KPAC Lalitha|K. S. Sethumadhavan|V. Dakshinamoorthy||\n|J A N|23|3|Yakshagaanam|Madhu, Sheela|Sheela|M. S. Viswanathan||\n|J A N|30|4|Paalkkadal|Sheela, Sharada|T. K. Prasad|A. T. Ummer||\n|F E B|5|5|Amma|Madhu, Srividya|M. Krishnan Nair|M. K. Arjunan||\n|F E B|13|6|Appooppan|Thikkurissi Sukumaran Nair, Kamal Haasan|P. Bhaskaran|M. S. Baburaj||\n|F E B|20|7|Srishti|Chowalloor Krishnankutty, Ravi Alummoodu|K. T. Muhammad|M. S. Baburaj||\n|F E B|20|8|Vanadevatha|Prem Nazir, Madhubala|Yusufali Kechery|G. Devarajan||\n|F E B|27|9|Samasya|Madhu, Kamalahaasan|K. Thankappan|Shyam||\n|F E B|27|10|Yudhabhoomi|K. P. Ummer, Vidhubala|Crossbelt Mani|R. K. Shekhar||\n|M A R|5|11|Seemantha Puthran|Prem Nazir, Jayabharathi|A. B. Raj|M. K. Arjunan||\n|M A R|12|12|Swapnadanam|Rani Chandra, Dr. Mohandas|K. G. George|Bhaskar Chandavarkar||\n|M A R|19|13|Thulavarsham|Prem Nazir, sreedevi, Sudheer|N. Sankaran Nair|V. Dakshinamoorthy||\n|M A R|20|14|Aruthu|Kaviyoor Ponnamma, Kamalahasan|Ravi|G. Devarajan||\n|M A R|26|15|Swimming Pool|Kamal Haasan, M. G. Soman|J. Sasikumar|M. K. Arjunan||\n\n# Question\nWhat' s the content in the (1,1) cells\n"  # noqa: E501


def test_prefix(llm=None, sampling_params=None, prompts=None):
    # if triton_version.startswith("2.1"):
    #     version_key = compute_core_version_key()
    # if triton_version.startswith("3.0"):
    #     version_key = triton_key()
    start_time = time.time()

    llm.generate(prompts, sampling_params=sampling_params)

    end_time = time.time()
    print(f"cost time {end_time - start_time}")


@dataclasses.dataclass
class Request:
    prompt: str
    prompt_len: int
    output_len: int


def sample_tokens(tokenizer: PreTrainedTokenizerBase, length: int) -> list[int]:
    vocab = tokenizer.get_vocab()
    all_special_ids = set(tokenizer.all_special_ids)

    # Remove the special tokens.
    return random.choices(
        [v for k, v in vocab.items() if k not in all_special_ids],
        k=length,
    )


def sample_requests_from_dataset(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    input_length_range: tuple[int, int],
    fixed_output_len: Optional[int],
) -> list[Request]:
    if fixed_output_len is not None and fixed_output_len < 4:
        raise ValueError("output_len too small")

    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
    # Filter out the conversations with less than 2 turns.
    dataset = [data for data in dataset if len(data["conversations"]) >= 2]
    # Only keep the first two turns of each conversation.
    dataset = [
        (data["conversations"][0]["value"], data["conversations"][1]["value"])
        for data in dataset
    ]

    # Shuffle the dataset.
    random.shuffle(dataset)

    min_len, max_len = input_length_range
    assert min_len >= 0 and max_len >= min_len, "input_length_range too small"

    # Filter out sequences that are too long or too short
    filtered_requests: list[Request] = []

    for i in range(len(dataset)):
        if len(filtered_requests) == num_requests:
            break

        # Tokenize the prompts and completions.
        prompt_token_ids = tokenizer(dataset[i][0]).input_ids
        prompt = tokenizer.decode(prompt_token_ids)
        completion = dataset[i][1]
        completion_token_ids = tokenizer(completion).input_ids
        prompt_len = len(prompt_token_ids)
        output_len = (
            len(completion_token_ids) if fixed_output_len is None else fixed_output_len
        )
        if min_len <= prompt_len <= max_len:
            filtered_requests.append(Request(prompt, prompt_len, output_len))

    return filtered_requests


def sample_requests_from_random(
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    input_length_range: tuple[int, int],
    fixed_output_len: Optional[int],
    prefix_len: int,
) -> list[Request]:
    requests = []
    prefix_token_ids = sample_tokens(tokenizer, prefix_len)
    min_len, max_len = input_length_range

    for i in range(num_requests):
        unique_part_token_ids = sample_tokens(
            tokenizer, random.randint(min_len - prefix_len, max_len - prefix_len)
        )
        prompt_token_ids = prefix_token_ids + unique_part_token_ids
        prompt = tokenizer.decode(prompt_token_ids)
        prompt_len = len(prompt_token_ids)
        assert min_len <= prompt_len <= max_len, (
            f"prompt_len {prompt_len} out of range {min_len}:{max_len}"
        )
        requests.append(Request(prompt, prompt_len, fixed_output_len))
    return requests


def repeat_and_sort_requests(
    requests: list[Request], repeat_count: int, sort: bool = False
) -> list[str]:
    repeated_requests = requests * repeat_count
    if sort:
        repeated_requests.sort(key=lambda x: x[1])
    else:
        random.shuffle(repeated_requests)
    return [req.prompt for req in repeated_requests]


def main(args):
    tokenizer = get_tokenizer(args.model, trust_remote_code=True)
    input_length_range = tuple(map(int, args.input_length_range.split(":")))
    random.seed(args.seed)
    if args.dataset_path is not None:
        if args.prefix_len > 0:
            raise ValueError(
                "prefix-len is not supported when dataset-path is provided."
            )
        print(f"Start to sample {args.num_prompts} prompts from {args.dataset_path}")
        filtered_requests = sample_requests_from_dataset(
            dataset_path=args.dataset_path,
            num_requests=args.num_prompts,
            tokenizer=tokenizer,
            input_length_range=input_length_range,
            fixed_output_len=args.output_len,
        )
    else:
        print(f"Start to sample {args.num_prompts} prompts from random")
        filtered_requests = sample_requests_from_random(
            num_requests=args.num_prompts,
            tokenizer=tokenizer,
            input_length_range=input_length_range,
            fixed_output_len=args.output_len,
            prefix_len=args.prefix_len,
        )

    # Print some helpful stats of the requests.
    print(f"Sampled {len(filtered_requests)} requests.")
    prompt_lens = [req.prompt_len for req in filtered_requests]
    print(f"Average input length: {sum(prompt_lens) / len(prompt_lens)}")
    print(f"P50 input length: {sorted(prompt_lens)[len(prompt_lens) // 2]}")
    print(f"Min Prompt Length: {min(prompt_lens)}")
    print(f"Max Prompt Length: {max(prompt_lens)}")

    engine_args = EngineArgs.from_cli_args(args)

    llm = LLM(**dataclasses.asdict(engine_args))

    sampling_params = SamplingParams(
        temperature=0,
        max_tokens=args.output_len,
        detokenize=not args.disable_detokenize,
    )

    print("Testing filtered requests")
    prompts = repeat_and_sort_requests(
        filtered_requests, repeat_count=args.repeat_count, sort=args.sort
    )

    print("------start generating------")
    test_prefix(
        llm=llm,
        prompts=prompts,
        sampling_params=sampling_params,
    )


def create_argument_parser():
    parser = FlexibleArgumentParser(
        description="Benchmark the performance with or without "
        "automatic prefix caching."
    )
    parser.add_argument(
        "--dataset-path", type=str, default=None, help="Path to the dataset."
    )
    parser.add_argument("--output-len", type=int, default=10)
    parser.add_argument(
        "--num-prompts",
        type=int,
        required=True,
        help="Number of the prompts sampled from dataset",
    )
    parser.add_argument(
        "--repeat-count",
        type=int,
        default=1,
        help="Number of times to repeat each prompt",
    )
    parser.add_argument(
        "--sort", action="store_true", help="Sort prompts by input length"
    )
    parser.add_argument(
        "--input-length-range",
        type=str,
        required=True,
        help="Range of input lengths for sampling prompts,"
        'specified as "min:max" (e.g., "128:256").',
    )
    parser.add_argument(
        "--prefix-len",
        type=int,
        default=0,
        help="Specifies the length of a common prefix to be "
        "added to the input prompt. The input-length-range will "
        "subtract this length when filtering prompts. Only used "
        "when dataset-path is not provided.",
    )
    parser.add_argument(
        "--disable-detokenize",
        action="store_true",
        help=(
            "Do not detokenize responses (i.e. do not include "
            "detokenization time in the latency measurement)"
        ),
    )

    parser = EngineArgs.add_cli_args(parser)

    return parser


if __name__ == "__main__":
    parser = create_argument_parser()
    args = parser.parse_args()
    main(args)