train_utils.py 17 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import random
import torchvision.transforms as transforms

import numpy as np
import torch

import imageio
import os
import PIL.Image
from typing import Union, Optional, List
from peft import get_peft_model_state_dict

from hyvideo.modules.posemb_layers import get_nd_rotary_pos_embed
from hyvideo.vae import AutoencoderKLCausal3D

from pathlib import Path
from einops import rearrange
from PIL import Image

from hyvideo.constants import PRECISION_TO_TYPE
from safetensors.torch import load_file


def convert_kohya_to_peft_keys(
    kohya_dict: dict,
    kohya_prefix="",
    peft_prefix: str = "base_model.model",
    device="cpu",
) -> dict:
    peft_dict = {}
    for k, v in kohya_dict.items():
        if ".alpha" in k:
            continue
        new_key = k.replace(f"{kohya_prefix}_lora_", f"{peft_prefix}.")
        new_key = new_key.replace("single_blocks_", "single_blocks.")
        new_key = new_key.replace("double_blocks_", "double_blocks.")
        new_key = new_key.replace("_img_attn_proj", ".img_attn_proj")
        new_key = new_key.replace("_img_attn_qkv", ".img_attn_qkv")
        new_key = new_key.replace("_img_mlp_fc", ".img_mlp.fc")
        new_key = new_key.replace("_txt_mlp_fc", ".txt_mlp.fc")
        new_key = new_key.replace("_img_mod", ".img_mod")
        new_key = new_key.replace("_txt", ".txt")
        new_key = new_key.replace("_modulation", ".modulation")
        new_key = new_key.replace("_linear", ".linear")
        new_key = new_key.replace("lora_down", "lora_A.default")
        new_key = new_key.replace("lora_up", "lora_B.default")
        new_key = new_key.replace(
            "_individual_token_refiner_blocks_", ".individual_token_refiner.blocks."
        )
        new_key = new_key.replace("_mlp_fc", ".mlp.fc")

        peft_dict[new_key] = v.to(device)
    return peft_dict


def load_lora(model, lora_path, device):
    kohya_weights = load_file(lora_path)
    peft_weights = convert_kohya_to_peft_keys(
        kohya_weights, kohya_prefix="Hunyuan_video_I2V", device=device
    )
    model.load_state_dict(peft_weights, strict=False)
    return model


def black_image(width, height):
    black_image = Image.new("RGB", (width, height), (0, 0, 0))
    return black_image


def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
    if images.ndim == 3:
        images = images[None, ...]
    images = (images * 255).round().astype("uint8")
    if images.shape[-1] == 1:
        # special case for grayscale (single channel) images
        pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
    else:
        pil_images = [Image.fromarray(image) for image in images]

    return pil_images


def get_cond_latents(args, latents, vae):
    """get conditioned latent by decode and encode the first frame latents"""
    first_image_latents = latents[:, :, 0, ...] if len(latents.shape) == 5 else latents
    first_image_latents = 1 / vae.config.scaling_factor * first_image_latents
    first_images = vae.decode(
        first_image_latents.unsqueeze(2).to(vae.dtype), return_dict=False
    )[0]
    first_images = first_images.squeeze(2)
    first_images = (first_images / 2 + 0.5).clamp(0, 1)
    first_images = first_images.cpu().permute(0, 2, 3, 1).float().numpy()
    first_images = numpy_to_pil(first_images)

    image_transform = transforms.Compose(
        [transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
    )
    first_images_pixel_values = [image_transform(image) for image in first_images]
    first_images_pixel_values = (
        torch.cat(first_images_pixel_values).unsqueeze(0).unsqueeze(2).to(vae.device)
    )

    vae_dtype = PRECISION_TO_TYPE[args.vae_precision]
    with torch.autocast(
        device_type="cuda", dtype=vae_dtype, enabled=vae_dtype != torch.float32
    ):
        cond_latents = vae.encode(
            first_images_pixel_values
        ).latent_dist.sample()  # B, C, F, H, W
        cond_latents.mul_(vae.config.scaling_factor)

    return cond_latents


def get_cond_images(args, latents, vae, is_uncond=False):
    """get conditioned images by decode the first frame latents"""
    sematic_image_latents = (
        latents[:, :, 0, ...] if len(latents.shape) == 5 else latents
    )
    sematic_image_latents = 1 / vae.config.scaling_factor * sematic_image_latents
    semantic_images = vae.decode(
        sematic_image_latents.unsqueeze(2).to(vae.dtype), return_dict=False
    )[0]
    semantic_images = semantic_images.squeeze(2)
    semantic_images = (semantic_images / 2 + 0.5).clamp(0, 1)
    semantic_images = semantic_images.cpu().permute(0, 2, 3, 1).float().numpy()
    semantic_images = numpy_to_pil(semantic_images)
    if is_uncond:
        semantic_images = [
            black_image(img.size[0], img.size[1]) for img in semantic_images
        ]

    return semantic_images


def load_state_dict(args, model, logger):
    pretrained_model_path = Path(args.model_base)
    if not pretrained_model_path.exists():
        raise ValueError(f"`models_root` not exists: {pretrained_model_path}")

    load_key = args.load_key
    if args.i2v_mode:
        dit_weight = Path(args.i2v_dit_weight)
    else:
        dit_weight = Path(args.dit_weight)

    if dit_weight is None:
        model_dir = pretrained_model_path / f"t2v_{args.model_resolution}"
        files = list(model_dir.glob("*.pt"))
        if len(files) == 0:
            raise ValueError(f"No model weights found in {model_dir}")
        if str(files[0]).startswith("pytorch_model_"):
            model_path = dit_weight / f"pytorch_model_{load_key}.pt"
            bare_model = True
        elif any(str(f).endswith("_model_states.pt") for f in files):
            files = [f for f in files if str(f).endswith("_model_states.pt")]
            model_path = files[0]
            if len(files) > 1:
                logger.warning(
                    f"Multiple model weights found in {dit_weight}, using {model_path}"
                )
            bare_model = False
        else:
            raise ValueError(
                f"Invalid model path: {dit_weight} with unrecognized weight format: "
                f"{list(map(str, files))}. When given a directory as --dit-weight, only "
                f"`pytorch_model_*.pt`(provided by HunyuanVideo official) and "
                f"`*_model_states.pt`(saved by deepspeed) can be parsed. If you want to load a "
                f"specific weight file, please provide the full path to the file."
            )
    else:
        if dit_weight.is_dir():
            files = list(dit_weight.glob("*.pt"))
            if len(files) == 0:
                raise ValueError(f"No model weights found in {dit_weight}")
            if str(files[0]).startswith("pytorch_model_"):
                model_path = dit_weight / f"pytorch_model_{load_key}.pt"
                bare_model = True
            elif any(str(f).endswith("_model_states.pt") for f in files):
                files = [f for f in files if str(f).endswith("_model_states.pt")]
                model_path = files[0]
                if len(files) > 1:
                    logger.warning(
                        f"Multiple model weights found in {dit_weight}, using {model_path}"
                    )
                bare_model = False
            else:
                raise ValueError(
                    f"Invalid model path: {dit_weight} with unrecognized weight format: "
                    f"{list(map(str, files))}. When given a directory as --dit-weight, only "
                    f"`pytorch_model_*.pt`(provided by HunyuanVideo official) and "
                    f"`*_model_states.pt`(saved by deepspeed) can be parsed. If you want to load a "
                    f"specific weight file, please provide the full path to the file."
                )
        elif dit_weight.is_file():
            model_path = dit_weight
            bare_model = "unknown"
        else:
            raise ValueError(f"Invalid model path: {dit_weight}")

    if not model_path.exists():
        raise ValueError(f"model_path not exists: {model_path}")
    logger.info(f"Loading torch model {model_path}...")
    state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)

    if bare_model == "unknown" and ("ema" in state_dict or "module" in state_dict):
        bare_model = False
    if bare_model is False:
        if load_key in state_dict:
            state_dict = state_dict[load_key]
        else:
            raise KeyError(
                f"Missing key: `{load_key}` in the checkpoint: {model_path}. The keys in the checkpoint "
                f"are: {list(state_dict.keys())}."
            )
    model.load_state_dict(state_dict, strict=True)
    return model


class set_worker_seed_builder:
    def __init__(self, global_rank):
        self.global_rank = global_rank

    def __call__(self, worker_id):
        set_manual_seed(torch.initial_seed() % (2 ** 32 - 1))


def set_reproducibility(enable, global_seed=None):
    if enable:
        # Configure the seed for reproducibility
        set_manual_seed(global_seed)
    # Set following debug environment variable
    # See the link for details: https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility
    os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
    # Cudnn benchmarking
    torch.backends.cudnn.benchmark = not enable
    # Use deterministic algorithms in PyTorch
    torch.use_deterministic_algorithms(enable)

    # LSTM and RNN networks are not deterministic


def prepare_model_inputs(
    args,
    batch: tuple,
    device: Union[int, str],
    model,
    vae,
    text_encoder,
    text_encoder_2=None,
    rope_theta_rescale_factor: Union[float, List[float]] = 1.0,
    rope_interpolation_factor: Union[float, List[float]] = 1.0,
):
    media, latents, *batch_args = batch
    if len(batch_args) == 3:
        text_ids, text_mask, kwargs = batch_args
        text_ids_2, text_mask_2 = None, None
    elif len(batch_args) == 5:
        text_ids, text_mask, text_ids_2, text_mask_2, kwargs = batch_args
    else:
        raise ValueError(f"Unexpected batch_args.")
    data_type = kwargs["type"][0]

    # Move batch to device
    media = media.to(device)
    latents = latents.to(device)
    text_ids = text_ids.to(device)
    text_mask = text_mask.to(device)

    # ======================================== Encode media ======================================
    # Used for 3D VAE with 2D inputs(image).
    # Prepare media shape for 2D/3D VAE
    if len(latents.shape) == 1:
        if len(media.shape) == 4:
            # media is a batch of image with shape [b, c, h, w]
            if isinstance(vae, AutoencoderKLCausal3D):
                media = media.unsqueeze(2)  # [b, c, 1, h, w]
        elif len(media.shape) == 5:
            # media is a batch of video with shape [b, c, f, h, w]
            if not isinstance(vae, AutoencoderKLCausal3D):
                media = rearrange(media, "b c f h w -> (b f) c h w")
        else:
            raise ValueError(
                f"Only support media with shape (b, c, h, w) or (b, c, f, h, w), but got {media.shape}."
            )

        vae_dtype = PRECISION_TO_TYPE[args.vae_precision]
        with torch.autocast(
            device_type="cuda", dtype=vae_dtype, enabled=vae_dtype != torch.float32
        ):
            latents = vae.encode(media).latent_dist.sample()
            if hasattr(vae.config, "shift_factor") and vae.config.shift_factor:
                latents.sub_(vae.config.shift_factor).mul_(vae.config.scaling_factor)
            else:
                latents.mul_(vae.config.scaling_factor)
    elif len(latents.shape) == 5 or len(latents.shape) == 4:  # Using video/image cache
        latents = (
            latents * vae.config.scaling_factor
        )  # vae cache is not multiplied by scaling_factor
    else:
        raise ValueError(
            f"Only support media/latent with shape (b, c, h, w) or (b, c, f, h, w), but got {media.shape} {latents.shape}."
        )

    cond_latents = get_cond_latents(args, latents, vae)
    is_uncond = (
        torch.tensor(1).to(torch.int64)
        if random.random() < args.sematic_cond_drop_p
        else torch.tensor(0).to(torch.int64)
    )
    semantic_images = get_cond_images(args, latents, vae, is_uncond=is_uncond)

    # ======================================== Encode text ======================================
    # Autocast is handled by text_encoder itself.
    # Whether to apply text_mask is determined by args.use_attention_mask.
    text_outputs = text_encoder.encode(
        {"input_ids": text_ids, "attention_mask": text_mask},
        data_type=batch_args[-1]["type"][0],
        semantic_images=semantic_images,
    )
    text_states = text_outputs.hidden_state
    text_mask = text_outputs.attention_mask
    text_states_2 = (
        text_encoder_2.encode(
            {"input_ids": text_ids_2, "attention_mask": text_mask_2},
            data_type=data_type,
        ).hidden_state
        if text_encoder_2 is not None
        else None
    )

    # ======================================== Build RoPE ======================================
    target_ndim = 3  # n-d RoPE
    ndim = len(latents.shape) - 2
    latents_size = list(latents.shape[-ndim:])
    freqs_cos, freqs_sin = get_rope_freq_from_size(
        args,
        model,
        latents_size,
        ndim,
        target_ndim,
        rope_theta_rescale_factor=rope_theta_rescale_factor,
        rope_interpolation_factor=rope_interpolation_factor,
    )

    # ===================================== Pack model kwargs ==================================
    model_kwargs = dict(
        text_states=text_states,  # [b, 256, 4096]
        text_mask=text_mask,  # [b, 256]
        text_states_2=text_states_2,  # [b, 768]
        freqs_cos=freqs_cos,  # [seqlen, head_dim]
        freqs_sin=freqs_sin,  # [seqlen, head_dim]
        return_dict=True,
    )

    return latents, model_kwargs, freqs_cos.shape[0], cond_latents


def format_params(params):
    if params < 1e6:
        return f"{params} (less than 1M)"
    elif params < 1e9:
        return f"{params / 1e6:.2f}M"
    else:
        return f"{params / 1e9:.2f}B"


def set_manual_seed(global_seed):
    random.seed(global_seed)
    np.random.seed(global_seed)
    torch.manual_seed(global_seed)


def get_rope_freq_from_size(
    args,
    model,
    latents_size,
    ndim,
    target_ndim,
    rope_theta_rescale_factor=1.0,
    rope_interpolation_factor=1.0,
):

    if isinstance(model.patch_size, int):
        assert all(s % model.patch_size == 0 for s in latents_size), (
            f"Latent size(last {ndim} dimensions) should be divisible by patch size({model.patch_size}), "
            f"but got {latents_size}."
        )
        rope_sizes = [s // model.patch_size for s in latents_size]

    elif isinstance(model.patch_size, list):
        assert all(
            s % model.patch_size[idx] == 0 for idx, s in enumerate(latents_size)
        ), (
            f"Latent size(last {ndim} dimensions) should be divisible by patch size({model.patch_size}), "
            f"but got {latents_size}."
        )
        rope_sizes = [s // model.patch_size[idx] for idx, s in enumerate(latents_size)]

    if len(rope_sizes) != target_ndim:
        rope_sizes = [1] * (target_ndim - len(rope_sizes)) + rope_sizes  # time axis
    head_dim = model.hidden_size // model.heads_num
    rope_dim_list = model.rope_dim_list

    if rope_dim_list is None:
        rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
    assert (
        sum(rope_dim_list) == head_dim
    ), "sum(rope_dim_list) should equal to head_dim of attention layer"

    freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
        rope_dim_list,
        rope_sizes,
        theta=args.rope_theta,
        use_real=True,
        theta_rescale_factor=rope_theta_rescale_factor,
        interpolation_factor=rope_interpolation_factor,
    )

    return freqs_cos, freqs_sin


# copy from https://github.com/huggingface/diffusers/blob/ec9bfa9e148b7764137dd92247ce859d915abcb0/examples/consistency_distillation/train_lcm_distill_lora_sd_wds.py#L258
# get kohya lora state dict
def get_module_kohya_state_dict(module, prefix, dtype, adapter_name="default"):
    kohya_ss_state_dict = {}
    for peft_key, weight in get_peft_model_state_dict(
        module, adapter_name=adapter_name
    ).items():
        kohya_key = peft_key.replace("base_model.model", prefix)
        kohya_key = kohya_key.replace("lora_A", "lora_down")
        kohya_key = kohya_key.replace("lora_B", "lora_up")
        kohya_key = kohya_key.replace(".", "_", kohya_key.count(".") - 2)
        kohya_ss_state_dict[kohya_key] = weight.to(dtype)

        # Set alpha parameter
        if "lora_down" in kohya_key:
            alpha_key = f'{kohya_key.split(".")[0]}.alpha'
            kohya_ss_state_dict[alpha_key] = torch.tensor(
                module.peft_config[adapter_name].lora_alpha
            ).to(dtype)

    return kohya_ss_state_dict


# get diffusers lora state dict
def get_module_diffusers_state_dict(module, dtype, adapter_name="default"):
    diffusers_ss_state_dict = {}
    for peft_key, weight in get_peft_model_state_dict(
        module, adapter_name=adapter_name
    ).items():
        diffusers_key = peft_key.replace("base_model.model", "diffusion_model")
        diffusers_ss_state_dict[diffusers_key] = weight.to(dtype)

    return diffusers_ss_state_dict