img_utils.py 8.47 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#BSD 3-Clause License
#
#Copyright (c) 2022, FourCastNet authors
#All rights reserved.
#
#Redistribution and use in source and binary forms, with or without
#modification, are permitted provided that the following conditions are met:
#
#1. Redistributions of source code must retain the above copyright notice, this
#   list of conditions and the following disclaimer.
#
#2. Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.
#
#3. Neither the name of the copyright holder nor the names of its
#   contributors may be used to endorse or promote products derived from
#   this software without specific prior written permission.
#
#THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
#AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
#IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
#FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
#DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
#SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
#CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
#OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#The code was authored by the following people:
#
#Jaideep Pathak - NVIDIA Corporation
#Shashank Subramanian - NERSC, Lawrence Berkeley National Laboratory
#Peter Harrington - NERSC, Lawrence Berkeley National Laboratory
#Sanjeev Raja - NERSC, Lawrence Berkeley National Laboratory 
#Ashesh Chattopadhyay - Rice University 
#Morteza Mardani - NVIDIA Corporation 
#Thorsten Kurth - NVIDIA Corporation 
#David Hall - NVIDIA Corporation 
#Zongyi Li - California Institute of Technology, NVIDIA Corporation 
#Kamyar Azizzadenesheli - Purdue University 
#Pedram Hassanzadeh - Rice University 
#Karthik Kashinath - NVIDIA Corporation 
#Animashree Anandkumar - California Institute of Technology, NVIDIA Corporation

import logging
import glob
from types import new_class
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.distributed import DistributedSampler
from torch import Tensor
import h5py
import math
import torchvision.transforms.functional as TF
import matplotlib
import matplotlib.pyplot as plt

class PeriodicPad2d(nn.Module):
    """ 
        pad longitudinal (left-right) circular 
        and pad latitude (top-bottom) with zeros
    """
    def __init__(self, pad_width):
       super(PeriodicPad2d, self).__init__()
       self.pad_width = pad_width

    def forward(self, x):
        # pad left and right circular
        out = F.pad(x, (self.pad_width, self.pad_width, 0, 0), mode="circular") 
        # pad top and bottom zeros
        out = F.pad(out, (0, 0, self.pad_width, self.pad_width), mode="constant", value=0) 
        return out

def reshape_fields(img, inp_or_tar, crop_size_x, crop_size_y,rnd_x, rnd_y, params, y_roll, train, normalize=True, orog=None, add_noise=False):
    #Takes in np array of size (n_history+1, c, h, w) and returns torch tensor of size ((n_channels*(n_history+1), crop_size_x, crop_size_y)

    if len(np.shape(img)) ==3:
      img = np.expand_dims(img, 0)

    
    img = img[:, :, 0:720] #remove last pixel
    n_history = np.shape(img)[0] - 1
    img_shape_x = np.shape(img)[-2]
    img_shape_y = np.shape(img)[-1]
    n_channels = np.shape(img)[1] #this will either be N_in_channels or N_out_channels
    channels = params.in_channels if inp_or_tar =='inp' else params.out_channels
    means = np.load(params.global_means_path)[:, channels]
    stds = np.load(params.global_stds_path)[:, channels]
    if crop_size_x == None:
        crop_size_x = img_shape_x
    if crop_size_y == None:
        crop_size_y = img_shape_y

    if normalize:
        if params.normalization == 'minmax':
          raise Exception("minmax not supported. Use zscore")
        elif params.normalization == 'zscore':
          img -=means
          img /=stds

    if params.add_grid:
        if inp_or_tar == 'inp':
            if params.gridtype == 'linear':
                assert params.N_grid_channels == 2, "N_grid_channels must be set to 2 for gridtype linear"
                x = np.meshgrid(np.linspace(-1, 1, img_shape_x))
                y = np.meshgrid(np.linspace(-1, 1, img_shape_y))
                grid_x, grid_y = np.meshgrid(y, x)
                grid = np.stack((grid_x, grid_y), axis = 0)
            elif params.gridtype == 'sinusoidal':
                assert params.N_grid_channels == 4, "N_grid_channels must be set to 4 for gridtype sinusoidal"
                x1 = np.meshgrid(np.sin(np.linspace(0, 2*np.pi, img_shape_x)))
                x2 = np.meshgrid(np.cos(np.linspace(0, 2*np.pi, img_shape_x)))
                y1 = np.meshgrid(np.sin(np.linspace(0, 2*np.pi, img_shape_y)))
                y2 = np.meshgrid(np.cos(np.linspace(0, 2*np.pi, img_shape_y)))
                grid_x1, grid_y1 = np.meshgrid(y1, x1)
                grid_x2, grid_y2 = np.meshgrid(y2, x2)
                grid = np.expand_dims(np.stack((grid_x1, grid_y1, grid_x2, grid_y2), axis = 0), axis = 0)
            img = np.concatenate((img, grid), axis = 1 )

    if params.orography and inp_or_tar == 'inp':
        img = np.concatenate((img, np.expand_dims(orog, axis = (0,1) )), axis = 1)
        n_channels += 1

    if params.roll:
        img = np.roll(img, y_roll, axis = -1)

    if train and (crop_size_x or crop_size_y):
        img = img[:,:,rnd_x:rnd_x+crop_size_x, rnd_y:rnd_y+crop_size_y]

    if inp_or_tar == 'inp':
        img = np.reshape(img, (n_channels*(n_history+1), crop_size_x, crop_size_y))
    elif inp_or_tar == 'tar':
        if params.two_step_training:
            img = np.reshape(img, (n_channels*2, crop_size_x, crop_size_y))
        else:
            img = np.reshape(img, (n_channels, crop_size_x, crop_size_y))

    if add_noise:
        img = img + np.random.normal(0, scale=params.noise_std, size=img.shape)

    return torch.as_tensor(img)
          
def reshape_precip(img, inp_or_tar, crop_size_x, crop_size_y,rnd_x, rnd_y, params, y_roll, train, normalize=True):

    if len(np.shape(img)) ==2:
      img = np.expand_dims(img, 0)

    img = img[:,:720,:]
    img_shape_x = img.shape[-2]
    img_shape_y = img.shape[-1]
    n_channels = 1
    if crop_size_x == None:
        crop_size_x = img_shape_x
    if crop_size_y == None:
        crop_size_y = img_shape_y

    if normalize:
        eps = params.precip_eps
        img = np.log1p(img/eps)
    if params.add_grid:
        if inp_or_tar == 'inp':
            if params.gridtype == 'linear':
                assert params.N_grid_channels == 2, "N_grid_channels must be set to 2 for gridtype linear"
                x = np.meshgrid(np.linspace(-1, 1, img_shape_x))
                y = np.meshgrid(np.linspace(-1, 1, img_shape_y))
                grid_x, grid_y = np.meshgrid(y, x)
                grid = np.stack((grid_x, grid_y), axis = 0)
            elif params.gridtype == 'sinusoidal':
                assert params.N_grid_channels == 4, "N_grid_channels must be set to 4 for gridtype sinusoidal"
                x1 = np.meshgrid(np.sin(np.linspace(0, 2*np.pi, img_shape_x)))
                x2 = np.meshgrid(np.cos(np.linspace(0, 2*np.pi, img_shape_x)))
                y1 = np.meshgrid(np.sin(np.linspace(0, 2*np.pi, img_shape_y)))
                y2 = np.meshgrid(np.cos(np.linspace(0, 2*np.pi, img_shape_y)))
                grid_x1, grid_y1 = np.meshgrid(y1, x1)
                grid_x2, grid_y2 = np.meshgrid(y2, x2)
                grid = np.expand_dims(np.stack((grid_x1, grid_y1, grid_x2, grid_y2), axis = 0), axis = 0)
            img = np.concatenate((img, grid), axis = 1 )

    if params.roll:
        img = np.roll(img, y_roll, axis = -1)

    if train and (crop_size_x or crop_size_y):
        img = img[:,rnd_x:rnd_x+crop_size_x, rnd_y:rnd_y+crop_size_y]

    img = np.reshape(img, (n_channels, crop_size_x, crop_size_y))
    return torch.as_tensor(img)


def vis_precip(fields):
    pred, tar = fields
    fig, ax = plt.subplots(1, 2, figsize=(24,12))
    ax[0].imshow(pred, cmap="coolwarm")
    ax[0].set_title("tp pred")
    ax[1].imshow(tar, cmap="coolwarm")
    ax[1].set_title("tp tar")
    fig.tight_layout()
    return fig