afnonet.py 10.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#reference: https://github.com/NVlabs/AFNO-transformer

import math
from functools import partial
from collections import OrderedDict
from copy import Error, deepcopy
from re import S
from numpy.lib.arraypad import pad
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
#from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import DropPath, trunc_normal_
import torch.fft
from torch.nn.modules.container import Sequential
from torch.utils.checkpoint import checkpoint_sequential
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from utils.img_utils import PeriodicPad2d


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class AFNO2D(nn.Module):
    def __init__(self, hidden_size, num_blocks=8, sparsity_threshold=0.01, hard_thresholding_fraction=1, hidden_size_factor=1):
        super().__init__()
        assert hidden_size % num_blocks == 0, f"hidden_size {hidden_size} should be divisble by num_blocks {num_blocks}"

        self.hidden_size = hidden_size
        self.sparsity_threshold = sparsity_threshold
        self.num_blocks = num_blocks
        self.block_size = self.hidden_size // self.num_blocks
        self.hard_thresholding_fraction = hard_thresholding_fraction
        self.hidden_size_factor = hidden_size_factor
        self.scale = 0.02

        self.w1 = nn.Parameter(self.scale * torch.randn(2, self.num_blocks, self.block_size, self.block_size * self.hidden_size_factor))
        self.b1 = nn.Parameter(self.scale * torch.randn(2, self.num_blocks, self.block_size * self.hidden_size_factor))
        self.w2 = nn.Parameter(self.scale * torch.randn(2, self.num_blocks, self.block_size * self.hidden_size_factor, self.block_size))
        self.b2 = nn.Parameter(self.scale * torch.randn(2, self.num_blocks, self.block_size))

    def forward(self, x):
        bias = x

        dtype = x.dtype
        x = x.float()
        B, H, W, C = x.shape

        x = torch.fft.rfft2(x, dim=(1, 2), norm="ortho")
        x = x.reshape(B, H, W // 2 + 1, self.num_blocks, self.block_size)

        o1_real = torch.zeros([B, H, W // 2 + 1, self.num_blocks, self.block_size * self.hidden_size_factor], device=x.device)
        o1_imag = torch.zeros([B, H, W // 2 + 1, self.num_blocks, self.block_size * self.hidden_size_factor], device=x.device)
        o2_real = torch.zeros(x.shape, device=x.device)
        o2_imag = torch.zeros(x.shape, device=x.device)


        total_modes = H // 2 + 1
        kept_modes = int(total_modes * self.hard_thresholding_fraction)

        o1_real[:, total_modes-kept_modes:total_modes+kept_modes, :kept_modes] = F.relu(
            torch.einsum('...bi,bio->...bo', x[:, total_modes-kept_modes:total_modes+kept_modes, :kept_modes].real, self.w1[0]) - \
            torch.einsum('...bi,bio->...bo', x[:, total_modes-kept_modes:total_modes+kept_modes, :kept_modes].imag, self.w1[1]) + \
            self.b1[0]
        )

        o1_imag[:, total_modes-kept_modes:total_modes+kept_modes, :kept_modes] = F.relu(
            torch.einsum('...bi,bio->...bo', x[:, total_modes-kept_modes:total_modes+kept_modes, :kept_modes].imag, self.w1[0]) + \
            torch.einsum('...bi,bio->...bo', x[:, total_modes-kept_modes:total_modes+kept_modes, :kept_modes].real, self.w1[1]) + \
            self.b1[1]
        )

        o2_real[:, total_modes-kept_modes:total_modes+kept_modes, :kept_modes]  = (
            torch.einsum('...bi,bio->...bo', o1_real[:, total_modes-kept_modes:total_modes+kept_modes, :kept_modes], self.w2[0]) - \
            torch.einsum('...bi,bio->...bo', o1_imag[:, total_modes-kept_modes:total_modes+kept_modes, :kept_modes], self.w2[1]) + \
            self.b2[0]
        )

        o2_imag[:, total_modes-kept_modes:total_modes+kept_modes, :kept_modes]  = (
            torch.einsum('...bi,bio->...bo', o1_imag[:, total_modes-kept_modes:total_modes+kept_modes, :kept_modes], self.w2[0]) + \
            torch.einsum('...bi,bio->...bo', o1_real[:, total_modes-kept_modes:total_modes+kept_modes, :kept_modes], self.w2[1]) + \
            self.b2[1]
        )

        x = torch.stack([o2_real, o2_imag], dim=-1)
        x = F.softshrink(x, lambd=self.sparsity_threshold)
        x = torch.view_as_complex(x)
        x = x.reshape(B, H, W // 2 + 1, C)
        x = torch.fft.irfft2(x, s=(H, W), dim=(1,2), norm="ortho")
        x = x.type(dtype)

        return x + bias


class Block(nn.Module):
    def __init__(
            self,
            dim,
            mlp_ratio=4.,
            drop=0.,
            drop_path=0.,
            act_layer=nn.GELU,
            norm_layer=nn.LayerNorm,
            double_skip=True,
            num_blocks=8,
            sparsity_threshold=0.01,
            hard_thresholding_fraction=1.0
        ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.filter = AFNO2D(dim, num_blocks, sparsity_threshold, hard_thresholding_fraction) 
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        #self.drop_path = nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.double_skip = double_skip

    def forward(self, x):
        residual = x
        x = self.norm1(x)
        x = self.filter(x)

        if self.double_skip:
            x = x + residual
            residual = x

        x = self.norm2(x)
        x = self.mlp(x)
        x = self.drop_path(x)
        x = x + residual
        return x

class PrecipNet(nn.Module):
    def __init__(self, params, backbone):
        super().__init__()
        self.params = params
        self.patch_size = (params.patch_size, params.patch_size)
        self.in_chans = params.N_in_channels
        self.out_chans = params.N_out_channels
        self.backbone = backbone
        self.ppad = PeriodicPad2d(1)
        self.conv = nn.Conv2d(self.out_chans, self.out_chans, kernel_size=3, stride=1, padding=0, bias=True)
        self.act = nn.ReLU()

    def forward(self, x):
        x = self.backbone(x)
        x = self.ppad(x)
        x = self.conv(x)
        x = self.act(x)
        return x

class AFNONet(nn.Module):
    def __init__(
            self,
            params,
            img_size=(720, 1440),
            patch_size=(16, 16),
            in_chans=2,
            out_chans=2,
            embed_dim=768,
            depth=12,
            mlp_ratio=4.,
            drop_rate=0.,
            drop_path_rate=0.,
            num_blocks=16,
            sparsity_threshold=0.01,
            hard_thresholding_fraction=1.0,
        ):
        super().__init__()
        self.params = params
        self.img_size = img_size
        self.patch_size = (params.patch_size, params.patch_size)
        self.in_chans = params.N_in_channels
        self.out_chans = params.N_out_channels
        self.num_features = self.embed_dim = embed_dim
        self.num_blocks = params.num_blocks 
        norm_layer = partial(nn.LayerNorm, eps=1e-6)

        self.patch_embed = PatchEmbed(img_size=img_size, patch_size=self.patch_size, in_chans=self.in_chans, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_rate)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]

        self.h = img_size[0] // self.patch_size[0]
        self.w = img_size[1] // self.patch_size[1]

        self.blocks = nn.ModuleList([
            Block(dim=embed_dim, mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
            num_blocks=self.num_blocks, sparsity_threshold=sparsity_threshold, hard_thresholding_fraction=hard_thresholding_fraction) 
        for i in range(depth)])

        self.norm = norm_layer(embed_dim)

        self.head = nn.Linear(embed_dim, self.out_chans*self.patch_size[0]*self.patch_size[1], bias=False)

        trunc_normal_(self.pos_embed, std=.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def forward_features(self, x):
        B = x.shape[0]
        x = self.patch_embed(x)
        x = x + self.pos_embed
        x = self.pos_drop(x)
        
        x = x.reshape(B, self.h, self.w, self.embed_dim)
        for blk in self.blocks:
            x = blk(x)

        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        x = rearrange(
            x,
            "b h w (p1 p2 c_out) -> b c_out (h p1) (w p2)",
            p1=self.patch_size[0],
            p2=self.patch_size[1],
            h=self.img_size[0] // self.patch_size[0],
            w=self.img_size[1] // self.patch_size[1],
        )
        return x


class PatchEmbed(nn.Module):
    def __init__(self, img_size=(224, 224), patch_size=(16, 16), in_chans=3, embed_dim=768):
        super().__init__()
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        B, C, H, W = x.shape
        assert H == self.img_size[0] and W == self.img_size[1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x


if __name__ == "__main__":
    model = AFNONet(img_size=(720, 1440), patch_size=(4,4), in_chans=3, out_chans=10)
    sample = torch.randn(1, 3, 720, 1440)
    result = model(sample)
    print(result.shape)
    print(torch.norm(result))