decoder.py 11.8 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
from typing import Optional

import numpy as np
import torch

from mmdet.core.bbox.builder import BBOX_CODERS

from projects.mmdet3d_plugin.core.box3d import *
from projects.mmdet3d_plugin.models.detection3d.decoder import *
from projects.mmdet3d_plugin.datasets.utils import box3d_to_corners


@BBOX_CODERS.register_module()
class SparseBox3DMotionDecoder(SparseBox3DDecoder):
    def __init__(self):
        super(SparseBox3DMotionDecoder, self).__init__()

    def decode(
        self,
        cls_scores,
        box_preds,
        instance_id=None,
        quality=None,
        motion_output=None,
        output_idx=-1,
    ):
        squeeze_cls = instance_id is not None

        cls_scores = cls_scores[output_idx].sigmoid()

        if squeeze_cls:
            cls_scores, cls_ids = cls_scores.max(dim=-1)
            cls_scores = cls_scores.unsqueeze(dim=-1)

        box_preds = box_preds[output_idx]
        bs, num_pred, num_cls = cls_scores.shape
        cls_scores, indices = cls_scores.flatten(start_dim=1).topk(
            self.num_output, dim=1, sorted=self.sorted
        )
        if not squeeze_cls:
            cls_ids = indices % num_cls
        if self.score_threshold is not None:
            mask = cls_scores >= self.score_threshold

        if quality[output_idx] is None:
            quality = None
        if quality is not None:
            centerness = quality[output_idx][..., CNS]
            centerness = torch.gather(centerness, 1, indices // num_cls)
            cls_scores_origin = cls_scores.clone()
            cls_scores *= centerness.sigmoid()
            cls_scores, idx = torch.sort(cls_scores, dim=1, descending=True)
            if not squeeze_cls:
                cls_ids = torch.gather(cls_ids, 1, idx)
            if self.score_threshold is not None:
                mask = torch.gather(mask, 1, idx)
            indices = torch.gather(indices, 1, idx)

        output = []
        anchor_queue = motion_output["anchor_queue"]
        anchor_queue = torch.stack(anchor_queue, dim=2)
        period = motion_output["period"]

        for i in range(bs):
            category_ids = cls_ids[i]
            if squeeze_cls:
                category_ids = category_ids[indices[i]]
            scores = cls_scores[i]
            box = box_preds[i, indices[i] // num_cls]
            if self.score_threshold is not None:
                category_ids = category_ids[mask[i]]
                scores = scores[mask[i]]
                box = box[mask[i]]
            if quality is not None:
                scores_origin = cls_scores_origin[i]
                if self.score_threshold is not None:
                    scores_origin = scores_origin[mask[i]]

            box = decode_box(box)
            trajs = motion_output["prediction"][-1]
            traj_cls = motion_output["classification"][-1].sigmoid()
            traj = trajs[i, indices[i] // num_cls]
            traj_cls = traj_cls[i, indices[i] // num_cls]
            if self.score_threshold is not None:
                traj = traj[mask[i]]
                traj_cls = traj_cls[mask[i]]
            traj = traj.cumsum(dim=-2) + box[:, None, None, :2]
            output.append(
                {
                    "trajs_3d": traj.cpu(),
                    "trajs_score": traj_cls.cpu()
                }
            )

            temp_anchor = anchor_queue[i, indices[i] // num_cls]
            temp_period = period[i, indices[i] // num_cls]
            if self.score_threshold is not None:
                temp_anchor = temp_anchor[mask[i]]
                temp_period = temp_period[mask[i]]
            num_pred, queue_len = temp_anchor.shape[:2]
            temp_anchor = temp_anchor.flatten(0, 1)
            temp_anchor = decode_box(temp_anchor)
            temp_anchor = temp_anchor.reshape([num_pred, queue_len, box.shape[-1]])
            output[-1]['anchor_queue'] = temp_anchor.cpu()
            output[-1]['period'] = temp_period.cpu()
        
        return output


@BBOX_CODERS.register_module()
class HierarchicalPlanningDecoder(object):
    def __init__(
        self,
        ego_fut_ts,
        ego_fut_mode,
        use_rescore=False,
    ):
        super(HierarchicalPlanningDecoder, self).__init__()
        self.ego_fut_ts = ego_fut_ts
        self.ego_fut_mode = ego_fut_mode
        self.use_rescore = use_rescore
    
    def decode(
        self, 
        det_output,
        motion_output,
        planning_output, 
        data,
    ):
        classification = planning_output['classification'][-1]
        prediction = planning_output['prediction'][-1]
        bs = classification.shape[0]
        classification = classification.reshape(bs, 3, self.ego_fut_mode)
        prediction = prediction.reshape(bs, 3, self.ego_fut_mode, self.ego_fut_ts, 2).cumsum(dim=-2)
        classification, final_planning = self.select(det_output, motion_output, classification, prediction, data)
        anchor_queue = planning_output["anchor_queue"]
        anchor_queue = torch.stack(anchor_queue, dim=2)
        period = planning_output["period"]
        output = []
        for i, (cls, pred) in enumerate(zip(classification, prediction)):
            output.append(
                {
                    "planning_score": cls.sigmoid().cpu(),
                    "planning": pred.cpu(),
                    "final_planning": final_planning[i].cpu(),
                    "ego_period": period[i].cpu(),
                    "ego_anchor_queue": decode_box(anchor_queue[i]).cpu(),
                }
            )

        return output

    def select(
        self,
        det_output,
        motion_output,
        plan_cls,
        plan_reg,
        data,
    ):
        det_classification = det_output["classification"][-1].sigmoid()
        det_anchors = det_output["prediction"][-1]
        det_confidence = det_classification.max(dim=-1).values
        motion_cls = motion_output["classification"][-1].sigmoid()
        motion_reg = motion_output["prediction"][-1]
        
        # cmd select
        bs = motion_cls.shape[0]
        bs_indices = torch.arange(bs, device=motion_cls.device)
        cmd = data['gt_ego_fut_cmd'].argmax(dim=-1)
        plan_cls_full = plan_cls.detach().clone()
        plan_cls = plan_cls[bs_indices, cmd]
        plan_reg = plan_reg[bs_indices, cmd]

        # rescore
        if self.use_rescore:
            plan_cls = self.rescore(
                plan_cls,
                plan_reg, 
                motion_cls,
                motion_reg, 
                det_anchors,
                det_confidence,
            )
        plan_cls_full[bs_indices, cmd] = plan_cls
        mode_idx = plan_cls.argmax(dim=-1)
        final_planning = plan_reg[bs_indices, mode_idx]
        return plan_cls_full, final_planning

    def rescore(
        self, 
        plan_cls,
        plan_reg, 
        motion_cls,
        motion_reg, 
        det_anchors,
        det_confidence,
        score_thresh=0.5,
        static_dis_thresh=0.5,
        dim_scale=1.1,
        num_motion_mode=1,
        offset=0.5,
    ):
        
        def cat_with_zero(traj):
            zeros = traj.new_zeros(traj.shape[:-2] + (1, 2))
            traj_cat = torch.cat([zeros, traj], dim=-2)
            return traj_cat
        
        def get_yaw(traj, start_yaw=np.pi/2):
            yaw = traj.new_zeros(traj.shape[:-1])
            yaw[..., 1:-1] = torch.atan2(
                traj[..., 2:, 1] - traj[..., :-2, 1],
                traj[..., 2:, 0] - traj[..., :-2, 0],
            )
            yaw[..., -1] = torch.atan2(
                traj[..., -1, 1] - traj[..., -2, 1],
                traj[..., -1, 0] - traj[..., -2, 0],
            )
            yaw[..., 0] = start_yaw
            # for static object, estimated future yaw would be unstable
            start = traj[..., 0, :]
            end = traj[..., -1, :]
            dist = torch.linalg.norm(end - start, dim=-1)
            mask = dist < static_dis_thresh
            start_yaw = yaw[..., 0].unsqueeze(-1)
            yaw = torch.where(
                mask.unsqueeze(-1),
                start_yaw,
                yaw,
            )
            return yaw.unsqueeze(-1)
        
        ## ego
        bs = plan_reg.shape[0]
        plan_reg_cat = cat_with_zero(plan_reg)
        ego_box = det_anchors.new_zeros(bs, self.ego_fut_mode, self.ego_fut_ts + 1, 7)
        ego_box[..., [X, Y]] = plan_reg_cat
        ego_box[..., [W, L, H]] = ego_box.new_tensor([4.08, 1.73, 1.56]) * dim_scale
        ego_box[..., [YAW]] = get_yaw(plan_reg_cat)

        ## motion
        motion_reg = motion_reg[..., :self.ego_fut_ts, :].cumsum(-2)
        motion_reg = cat_with_zero(motion_reg) + det_anchors[:, :, None, None, :2]
        _, motion_mode_idx = torch.topk(motion_cls, num_motion_mode, dim=-1)
        motion_mode_idx = motion_mode_idx[..., None, None].repeat(1, 1, 1, self.ego_fut_ts + 1, 2)
        motion_reg = torch.gather(motion_reg, 2, motion_mode_idx)

        motion_box = motion_reg.new_zeros(motion_reg.shape[:-1] + (7,))
        motion_box[..., [X, Y]] = motion_reg
        motion_box[..., [W, L, H]] = det_anchors[..., None, None, [W, L, H]].exp()
        box_yaw = torch.atan2(
            det_anchors[..., SIN_YAW],
            det_anchors[..., COS_YAW],
        )
        motion_box[..., [YAW]] = get_yaw(motion_reg, box_yaw.unsqueeze(-1))

        filter_mask = det_confidence < score_thresh
        motion_box[filter_mask] = 1e6

        ego_box = ego_box[..., 1:, :]
        motion_box = motion_box[..., 1:, :]

        bs, num_ego_mode, ts, _ = ego_box.shape
        bs, num_anchor, num_motion_mode, ts, _ = motion_box.shape
        ego_box = ego_box[:, None, None].repeat(1, num_anchor, num_motion_mode, 1, 1, 1).flatten(0, -2)
        motion_box = motion_box.unsqueeze(3).repeat(1, 1, 1, num_ego_mode, 1, 1).flatten(0, -2)

        ego_box[0] += offset * torch.cos(ego_box[6])
        ego_box[1] += offset * torch.sin(ego_box[6])
        col = check_collision(ego_box, motion_box)
        col = col.reshape(bs, num_anchor, num_motion_mode, num_ego_mode, ts).permute(0, 3, 1, 2, 4)
        col = col.flatten(2, -1).any(dim=-1)
        all_col = col.all(dim=-1)
        col[all_col] = False # for case that all modes collide, no need to rescore
        score_offset = col.float() * -999
        plan_cls = plan_cls + score_offset
        return plan_cls


def check_collision(boxes1, boxes2):
    '''
        A rough check for collision detection: 
            check if any corner point of boxes1 is inside boxes2 and vice versa.
        
        boxes1: tensor with shape [N, 7], [x, y, z, w, l, h, yaw]
        boxes2: tensor with shape [N, 7]
    '''
    col_1 = corners_in_box(boxes1.clone(), boxes2.clone())
    col_2 = corners_in_box(boxes2.clone(), boxes1.clone())
    collision = torch.logical_or(col_1, col_2)

    return collision

def corners_in_box(boxes1, boxes2):
    if  boxes1.shape[0] == 0 or boxes2.shape[0] == 0:
        return False

    boxes1_yaw = boxes1[:, 6].clone()
    boxes1_loc = boxes1[:, :3].clone()
    cos_yaw = torch.cos(-boxes1_yaw)
    sin_yaw = torch.sin(-boxes1_yaw)
    rot_mat_T = torch.stack(
        [
            torch.stack([cos_yaw, sin_yaw]),
            torch.stack([-sin_yaw, cos_yaw]),
        ]
    )
    # translate and rotate boxes
    boxes1[:, :3] = boxes1[:, :3] - boxes1_loc
    boxes1[:, :2] = torch.einsum('ij,jki->ik', boxes1[:, :2], rot_mat_T)
    boxes1[:, 6] = boxes1[:, 6] - boxes1_yaw

    boxes2[:, :3] = boxes2[:, :3] - boxes1_loc
    boxes2[:, :2] = torch.einsum('ij,jki->ik', boxes2[:, :2], rot_mat_T)
    boxes2[:, 6] = boxes2[:, 6] - boxes1_yaw

    corners_box2 = box3d_to_corners(boxes2)[:, [0, 3, 7, 4], :2]
    corners_box2 = torch.from_numpy(corners_box2).to(boxes2.device)
    H = boxes1[:, [3]]
    W = boxes1[:, [4]]

    collision = torch.logical_and(
        torch.logical_and(corners_box2[..., 0] <= H / 2, corners_box2[..., 0] >= -H / 2),
        torch.logical_and(corners_box2[..., 1] <= W / 2, corners_box2[..., 1] >= -W / 2),
    )
    collision = collision.any(dim=-1)

    return collision