planning_eval.py 6.29 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from tqdm import tqdm
import torch
import torch.nn as nn
import numpy as np
from shapely.geometry import Polygon

from mmcv.utils import print_log
from mmdet.datasets import build_dataset, build_dataloader

from projects.mmdet3d_plugin.datasets.utils import box3d_to_corners


def check_collision(ego_box, boxes):
    '''
        ego_box: tensor with shape [7], [x, y, z, w, l, h, yaw]
        boxes: tensor with shape [N, 7]
    '''
    if  boxes.shape[0] == 0:
        return False

    # follow uniad, add a 0.5m offset
    ego_box[0] += 0.5 * torch.cos(ego_box[6])
    ego_box[1] += 0.5 * torch.sin(ego_box[6])
    ego_corners_box = box3d_to_corners(ego_box.unsqueeze(0))[0, [0, 3, 7, 4], :2]
    corners_box = box3d_to_corners(boxes)[:, [0, 3, 7, 4], :2]
    ego_poly = Polygon([(point[0], point[1]) for point in ego_corners_box])
    for i in range(len(corners_box)):
        box_poly =  Polygon([(point[0], point[1]) for point in corners_box[i]])
        collision = ego_poly.intersects(box_poly)
        if collision:
            return True

    return False

def get_yaw(traj):
    start = traj[0]
    end = traj[-1]
    dist = torch.linalg.norm(end - start, dim=-1)
    if dist < 0.5:
        return traj.new_ones(traj.shape[0]) * np.pi / 2

    zeros = traj.new_zeros((1, 2))
    traj_cat = torch.cat([zeros, traj], dim=0)
    yaw = traj.new_zeros(traj.shape[0]+1)
    yaw[..., 1:-1] = torch.atan2(
        traj_cat[..., 2:, 1] - traj_cat[..., :-2, 1],
        traj_cat[..., 2:, 0] - traj_cat[..., :-2, 0],
    )
    yaw[..., -1] = torch.atan2(
        traj_cat[..., -1, 1] - traj_cat[..., -2, 1],
        traj_cat[..., -1, 0] - traj_cat[..., -2, 0],
    )
    return yaw[1:]

class PlanningMetric():
    def __init__(
        self,
        n_future=6,
        compute_on_step: bool = False,
    ):
        self.W = 1.85
        self.H = 4.084

        self.n_future = n_future
        self.reset()

    def reset(self):
        self.obj_col = torch.zeros(self.n_future)
        self.obj_box_col = torch.zeros(self.n_future)
        self.L2 = torch.zeros(self.n_future)
        self.total = torch.tensor(0)

    def evaluate_single_coll(self, traj, fut_boxes):
        n_future = traj.shape[0]
        yaw = get_yaw(traj)
        ego_box = traj.new_zeros((n_future, 7))
        ego_box[:, :2] = traj
        ego_box[:, 3:6] = ego_box.new_tensor([self.H, self.W, 1.56])
        ego_box[:, 6] = yaw
        collision = torch.zeros(n_future, dtype=torch.bool)

        for t in range(n_future):
            ego_box_t = ego_box[t].clone()
            boxes = fut_boxes[t][0].clone()
            collision[t] = check_collision(ego_box_t, boxes)
        return collision

    def evaluate_coll(self, trajs, gt_trajs, fut_boxes):
        B, n_future, _ = trajs.shape
        trajs = trajs * torch.tensor([-1, 1], device=trajs.device)
        gt_trajs = gt_trajs * torch.tensor([-1, 1], device=gt_trajs.device)

        obj_coll_sum = torch.zeros(n_future, device=trajs.device)
        obj_box_coll_sum = torch.zeros(n_future, device=trajs.device)

        assert B == 1, 'only supprt bs=1'
        for i in range(B):
            gt_box_coll = self.evaluate_single_coll(gt_trajs[i], fut_boxes)
            box_coll = self.evaluate_single_coll(trajs[i], fut_boxes)
            box_coll = torch.logical_and(box_coll, torch.logical_not(gt_box_coll))
            
            obj_coll_sum += gt_box_coll.long()
            obj_box_coll_sum += box_coll.long()

        return obj_coll_sum, obj_box_coll_sum

    def compute_L2(self, trajs, gt_trajs, gt_trajs_mask):
        '''
        trajs: torch.Tensor (B, n_future, 3)
        gt_trajs: torch.Tensor (B, n_future, 3)
        '''
        return torch.sqrt((((trajs[:, :, :2] - gt_trajs[:, :, :2]) ** 2) * gt_trajs_mask).sum(dim=-1)) 

    def update(self, trajs, gt_trajs, gt_trajs_mask, fut_boxes):
        assert trajs.shape == gt_trajs.shape
        trajs[..., 0] = - trajs[..., 0]
        gt_trajs[..., 0] = - gt_trajs[..., 0]
        L2 = self.compute_L2(trajs, gt_trajs, gt_trajs_mask)
        obj_coll_sum, obj_box_coll_sum = self.evaluate_coll(trajs[:,:,:2], gt_trajs[:,:,:2], fut_boxes)

        self.obj_col += obj_coll_sum
        self.obj_box_col += obj_box_coll_sum
        self.L2 += L2.sum(dim=0)
        self.total +=len(trajs)

    def compute(self):
        return {
            'obj_col': self.obj_col / self.total,
            'obj_box_col': self.obj_box_col / self.total,
            'L2' : self.L2 / self.total
        }


def planning_eval(results, eval_config, logger):
    dataset = build_dataset(eval_config)
    dataloader = build_dataloader(
            dataset, samples_per_gpu=1, workers_per_gpu=1, shuffle=False, dist=False)
    planning_metrics = PlanningMetric()
    for i, data in enumerate(tqdm(dataloader)):
        sdc_planning = data['gt_ego_fut_trajs'].cumsum(dim=-2).unsqueeze(1)
        sdc_planning_mask = data['gt_ego_fut_masks'].unsqueeze(-1).repeat(1, 1, 2).unsqueeze(1)
        command = data['gt_ego_fut_cmd'].argmax(dim=-1).item()
        fut_boxes = data['fut_boxes']
        if not sdc_planning_mask.all(): ## for incomplete gt, we do not count this sample
            continue
        res = results[i]
        pred_sdc_traj = res['img_bbox']['final_planning'].unsqueeze(0)
        planning_metrics.update(pred_sdc_traj[:, :6, :2], sdc_planning[0,:, :6, :2], sdc_planning_mask[0,:, :6, :2], fut_boxes)
       
    planning_results = planning_metrics.compute()
    planning_metrics.reset()
    from prettytable import PrettyTable
    planning_tab = PrettyTable()
    metric_dict = {}

    planning_tab.field_names = [
    "metrics", "0.5s", "1.0s", "1.5s", "2.0s", "2.5s", "3.0s", "avg"]
    for key in planning_results.keys():
        value = planning_results[key].tolist()
        new_values = []
        for i in range(len(value)):
            new_values.append(np.array(value[:i+1]).mean())
        value = new_values
        avg = [value[1], value[3], value[5]]
        avg = sum(avg) / len(avg)
        value.append(avg)
        metric_dict[key] = avg
        row_value = []
        row_value.append(key)
        for i in range(len(value)):
            if 'col' in key:
                row_value.append('%.3f' % float(value[i]*100) + '%')
            else:
                row_value.append('%.4f' % float(value[i]))
        planning_tab.add_row(row_value)

    print_log('\n'+str(planning_tab), logger=logger)
    return metric_dict