train.py 11.1 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Copyright (c) OpenMMLab. All rights reserved.
from __future__ import division
import sys
import os

print(sys.executable, os.path.abspath(__file__))
# import init_paths # for conda pkgs submitting method
import argparse
import copy
import mmcv
import time
import torch
import warnings
from mmcv import Config, DictAction
from mmcv.runner import get_dist_info, init_dist
from os import path as osp

from mmdet import __version__ as mmdet_version
from mmdet.apis import train_detector
from mmdet.datasets import build_dataset
from mmdet.models import build_detector
from mmdet.utils import collect_env, get_root_logger
from mmdet.apis import set_random_seed
from torch import distributed as dist
from datetime import timedelta

import cv2

cv2.setNumThreads(8)


def parse_args():
    parser = argparse.ArgumentParser(description="Train a detector")
    parser.add_argument("config", help="train config file path")
    parser.add_argument("--work-dir", help="the dir to save logs and models")
    parser.add_argument(
        "--resume-from", help="the checkpoint file to resume from"
    )
    parser.add_argument(
        "--no-validate",
        action="store_true",
        help="whether not to evaluate the checkpoint during training",
    )
    group_gpus = parser.add_mutually_exclusive_group()
    group_gpus.add_argument(
        "--gpus",
        type=int,
        help="number of gpus to use "
        "(only applicable to non-distributed training)",
    )
    group_gpus.add_argument(
        "--gpu-ids",
        type=int,
        nargs="+",
        help="ids of gpus to use "
        "(only applicable to non-distributed training)",
    )
    parser.add_argument("--seed", type=int, default=0, help="random seed")
    parser.add_argument(
        "--deterministic",
        action="store_true",
        help="whether to set deterministic options for CUDNN backend.",
    )
    parser.add_argument(
        "--options",
        nargs="+",
        action=DictAction,
        help="override some settings in the used config, the key-value pair "
        "in xxx=yyy format will be merged into config file (deprecate), "
        "change to --cfg-options instead.",
    )
    parser.add_argument(
        "--cfg-options",
        nargs="+",
        action=DictAction,
        help="override some settings in the used config, the key-value pair "
        "in xxx=yyy format will be merged into config file. If the value to "
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        "Note that the quotation marks are necessary and that no white space "
        "is allowed.",
    )
    parser.add_argument(
        "--dist-url",
        type=str,
        default="auto",
        help="dist url for init process, such as tcp://localhost:8000",
    )
    parser.add_argument("--gpus-per-machine", type=int, default=8)
    parser.add_argument(
        "--launcher",
        choices=["none", "pytorch", "slurm", "mpi", "mpi_nccl"],
        default="none",
        help="job launcher",
    )
    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument(
        "--autoscale-lr",
        action="store_true",
        help="automatically scale lr with the number of gpus",
    )
    args = parser.parse_args()
    if "LOCAL_RANK" not in os.environ:
        os.environ["LOCAL_RANK"] = str(args.local_rank)

    if args.options and args.cfg_options:
        raise ValueError(
            "--options and --cfg-options cannot be both specified, "
            "--options is deprecated in favor of --cfg-options"
        )
    if args.options:
        warnings.warn("--options is deprecated in favor of --cfg-options")
        args.cfg_options = args.options

    return args


def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # import modules from string list.
    if cfg.get("custom_imports", None):
        from mmcv.utils import import_modules_from_strings

        import_modules_from_strings(**cfg["custom_imports"])

    # import modules from plguin/xx, registry will be updated
    if hasattr(cfg, "plugin"):
        if cfg.plugin:
            import importlib

            if hasattr(cfg, "plugin_dir"):
                plugin_dir = cfg.plugin_dir
                _module_dir = os.path.dirname(plugin_dir)
                _module_dir = _module_dir.split("/")
                _module_path = _module_dir[0]

                for m in _module_dir[1:]:
                    _module_path = _module_path + "." + m
                print(_module_path)
                plg_lib = importlib.import_module(_module_path)
            else:
                # import dir is the dirpath for the config file
                _module_dir = os.path.dirname(args.config)
                _module_dir = _module_dir.split("/")
                _module_path = _module_dir[0]
                for m in _module_dir[1:]:
                    _module_path = _module_path + "." + m
                print(_module_path)
                plg_lib = importlib.import_module(_module_path)
            from projects.mmdet3d_plugin.apis.train import custom_train_model

    # set cudnn_benchmark
    if cfg.get("cudnn_benchmark", False):
        torch.backends.cudnn.benchmark = True

    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get("work_dir", None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join(
            "./work_dirs", osp.splitext(osp.basename(args.config))[0]
        )
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
    if args.gpu_ids is not None:
        cfg.gpu_ids = args.gpu_ids
    else:
        cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)

    if args.autoscale_lr:
        # apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
        cfg.optimizer["lr"] = cfg.optimizer["lr"] * len(cfg.gpu_ids) / 8

    # init distributed env first, since logger depends on the dist info.
    print("args.launcher:",args.launcher)
    if args.launcher == "none":
        distributed = False
        print("cfg.gpu_ids_none:", cfg.gpu_ids)
    elif args.launcher == "mpi_nccl":
        distributed = True

        import mpi4py.MPI as MPI

        comm = MPI.COMM_WORLD
        mpi_local_rank = comm.Get_rank()
        mpi_world_size = comm.Get_size()
        print(
            "MPI local_rank=%d, world_size=%d"
            % (mpi_local_rank, mpi_world_size)
        )

        # num_gpus = torch.cuda.device_count()
        device_ids_on_machines = list(range(args.gpus_per_machine))
        str_ids = list(map(str, device_ids_on_machines))
        os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(str_ids)
        torch.cuda.set_device(mpi_local_rank % args.gpus_per_machine)

        dist.init_process_group(
            backend="nccl",
            init_method=args.dist_url,
            world_size=mpi_world_size,
            rank=mpi_local_rank,
            timeout=timedelta(seconds=3600),
        )

        cfg.gpu_ids = range(mpi_world_size)
        print("cfg.gpu_ids_mpi_nccl:", cfg.gpu_ids)
    else:
        distributed = True
        init_dist(
            args.launcher, timeout=timedelta(seconds=3600), **cfg.dist_params
        )
        # re-set gpu_ids with distributed training mode
        _, world_size = get_dist_info()
        cfg.gpu_ids = range(world_size)
        print("cfg.gpu_ids_others:", cfg.gpu_ids)


    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
    # dump config
    cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
    # init the logger before other steps
    timestamp = time.strftime("%Y%m%d_%H%M%S", time.localtime())
    log_file = osp.join(cfg.work_dir, f"{timestamp}.log")
    # specify logger name, if we still use 'mmdet', the output info will be
    # filtered and won't be saved in the log_file
    # TODO: ugly workaround to judge whether we are training det or seg model
    logger = get_root_logger(
        log_file=log_file, log_level=cfg.log_level
    )

    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
    env_info = "\n".join([(f"{k}: {v}") for k, v in env_info_dict.items()])
    dash_line = "-" * 60 + "\n"
    logger.info(
        "Environment info:\n" + dash_line + env_info + "\n" + dash_line
    )
    meta["env_info"] = env_info
    meta["config"] = cfg.pretty_text

    # log some basic info
    logger.info(f"Distributed training: {distributed}")
    logger.info(f"Config:\n{cfg.pretty_text}")

    # set random seeds
    if args.seed is not None:
        logger.info(
            f"Set random seed to {args.seed}, "
            f"deterministic: {args.deterministic}"
        )
        set_random_seed(args.seed, deterministic=args.deterministic)
    cfg.seed = args.seed
    meta["seed"] = args.seed
    meta["exp_name"] = osp.basename(args.config)

    model = build_detector(
        cfg.model, train_cfg=cfg.get("train_cfg"), test_cfg=cfg.get("test_cfg")
    )
    model.init_weights()

    logger.info(f"Model:\n{model}")
    datasets = [build_dataset(cfg.data.train)]
    if len(cfg.workflow) == 2:
        val_dataset = copy.deepcopy(cfg.data.val)
        # in case we use a dataset wrapper
        if "dataset" in cfg.data.train:
            val_dataset.pipeline = cfg.data.train.dataset.pipeline
        else:
            val_dataset.pipeline = cfg.data.train.pipeline
        # set test_mode=False here in deep copied config
        # which do not affect AP/AR calculation later
        # refer to https://mmdetection3d.readthedocs.io/en/latest/tutorials/customize_runtime.html#customize-workflow  # noqa
        val_dataset.test_mode = False
        datasets.append(build_dataset(val_dataset))
    if cfg.checkpoint_config is not None:
        # save mmdet version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(
            mmdet_version=mmdet_version,
            config=cfg.pretty_text,
            CLASSES=datasets[0].CLASSES,
        )
    # add an attribute for visualization convenience
    model.CLASSES = datasets[0].CLASSES

    torch.backends.cudnn.benchmark = True  # 启用自动寻找最优卷积算法
    if hasattr(cfg, "plugin"):
        custom_train_model(
            model,
            datasets,
            cfg,
            distributed=distributed,
            validate=(not args.no_validate),
            timestamp=timestamp,
            meta=meta,
        )
    else:
        train_detector(
            model,
            datasets,
            cfg,
            distributed=distributed,
            validate=(not args.no_validate),
            timestamp=timestamp,
            meta=meta,
        )


if __name__ == "__main__":
    torch.multiprocessing.set_start_method(
        "fork"
    )  # use fork workers_per_gpu can be > 1
    main()