test.py 11.1 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import mmcv
import os
import torch
import warnings
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import (
    get_dist_info,
    init_dist,
    load_checkpoint,
    wrap_fp16_model,
)

from mmdet.apis import single_gpu_test, multi_gpu_test, set_random_seed
from mmdet.datasets import replace_ImageToTensor, build_dataset
from mmdet.datasets import build_dataloader as build_dataloader_origin
from mmdet.models import build_detector

from projects.mmdet3d_plugin.datasets.builder import build_dataloader
from projects.mmdet3d_plugin.apis.test import custom_multi_gpu_test


def parse_args():
    parser = argparse.ArgumentParser(
        description="MMDet test (and eval) a model"
    )
    parser.add_argument("config", help="test config file path")
    parser.add_argument("checkpoint", help="checkpoint file")
    parser.add_argument("--out", help="output result file in pickle format")
    parser.add_argument(
        "--fuse-conv-bn",
        action="store_true",
        help="Whether to fuse conv and bn, this will slightly increase"
        "the inference speed",
    )
    parser.add_argument(
        "--format-only",
        action="store_true",
        help="Format the output results without perform evaluation. It is"
        "useful when you want to format the result to a specific format and "
        "submit it to the test server",
    )
    parser.add_argument(
        "--eval",
        type=str,
        nargs="+",
        help='evaluation metrics, which depends on the dataset, e.g., "bbox",'
        ' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC',
    )
    parser.add_argument("--show", action="store_true", help="show results")
    parser.add_argument(
        "--show-dir", help="directory where results will be saved"
    )
    parser.add_argument(
        "--gpu-collect",
        action="store_true",
        help="whether to use gpu to collect results.",
    )
    parser.add_argument(
        "--tmpdir",
        help="tmp directory used for collecting results from multiple "
        "workers, available when gpu-collect is not specified",
    )
    parser.add_argument("--seed", type=int, default=0, help="random seed")
    parser.add_argument(
        "--deterministic",
        action="store_true",
        help="whether to set deterministic options for CUDNN backend.",
    )
    parser.add_argument(
        "--cfg-options",
        nargs="+",
        action=DictAction,
        help="override some settings in the used config, the key-value pair "
        "in xxx=yyy format will be merged into config file. If the value to "
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        "Note that the quotation marks are necessary and that no white space "
        "is allowed.",
    )
    parser.add_argument(
        "--options",
        nargs="+",
        action=DictAction,
        help="custom options for evaluation, the key-value pair in xxx=yyy "
        "format will be kwargs for dataset.evaluate() function (deprecate), "
        "change to --eval-options instead.",
    )
    parser.add_argument(
        "--eval-options",
        nargs="+",
        action=DictAction,
        help="custom options for evaluation, the key-value pair in xxx=yyy "
        "format will be kwargs for dataset.evaluate() function",
    )
    parser.add_argument(
        "--launcher",
        choices=["none", "pytorch", "slurm", "mpi"],
        default="none",
        help="job launcher",
    )
    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument("--result_file", type=str, default=None)
    parser.add_argument("--show_only", action="store_true")
    args = parser.parse_args()
    if "LOCAL_RANK" not in os.environ:
        os.environ["LOCAL_RANK"] = str(args.local_rank)

    if args.options and args.eval_options:
        raise ValueError(
            "--options and --eval-options cannot be both specified, "
            "--options is deprecated in favor of --eval-options"
        )
    if args.options:
        warnings.warn("--options is deprecated in favor of --eval-options")
        args.eval_options = args.options
    return args


def main():
    args = parse_args()

    assert (
        args.out or args.eval or args.format_only or args.show or args.show_dir
    ), (
        "Please specify at least one operation (save/eval/format/show the "
        'results / save the results) with the argument "--out", "--eval"'
        ', "--format-only", "--show" or "--show-dir"'
    )

    if args.eval and args.format_only:
        raise ValueError("--eval and --format_only cannot be both specified")

    if args.out is not None and not args.out.endswith((".pkl", ".pickle")):
        raise ValueError("The output file must be a pkl file.")

    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # import modules from string list.
    if cfg.get("custom_imports", None):
        from mmcv.utils import import_modules_from_strings

        import_modules_from_strings(**cfg["custom_imports"])

    # import modules from plguin/xx, registry will be updated
    if hasattr(cfg, "plugin"):
        if cfg.plugin:
            import importlib

            if hasattr(cfg, "plugin_dir"):
                plugin_dir = cfg.plugin_dir
                _module_dir = os.path.dirname(plugin_dir)
                _module_dir = _module_dir.split("/")
                _module_path = _module_dir[0]

                for m in _module_dir[1:]:
                    _module_path = _module_path + "." + m
                print(_module_path)
                plg_lib = importlib.import_module(_module_path)
            else:
                # import dir is the dirpath for the config file
                _module_dir = os.path.dirname(args.config)
                _module_dir = _module_dir.split("/")
                _module_path = _module_dir[0]
                for m in _module_dir[1:]:
                    _module_path = _module_path + "." + m
                print(_module_path)
                plg_lib = importlib.import_module(_module_path)

    # set cudnn_benchmark
    if cfg.get("cudnn_benchmark", False):
        torch.backends.cudnn.benchmark = True

    cfg.model.pretrained = None
    # in case the test dataset is concatenated
    samples_per_gpu = 1
    if isinstance(cfg.data.test, dict):
        cfg.data.test.test_mode = True
        samples_per_gpu = cfg.data.test.pop("samples_per_gpu", 1)
        if samples_per_gpu > 1:
            # Replace 'ImageToTensor' to 'DefaultFormatBundle'
            cfg.data.test.pipeline = replace_ImageToTensor(
                cfg.data.test.pipeline
            )
    elif isinstance(cfg.data.test, list):
        for ds_cfg in cfg.data.test:
            ds_cfg.test_mode = True
        samples_per_gpu = max(
            [ds_cfg.pop("samples_per_gpu", 1) for ds_cfg in cfg.data.test]
        )
        if samples_per_gpu > 1:
            for ds_cfg in cfg.data.test:
                ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline)

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == "none":
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # set random seeds
    if args.seed is not None:
        set_random_seed(args.seed, deterministic=args.deterministic)

    # build the dataloader
    dataset = build_dataset(cfg.data.test)
    print("distributed:", distributed)
    if distributed:
        data_loader = build_dataloader(
            dataset,
            samples_per_gpu=samples_per_gpu,
            workers_per_gpu=cfg.data.workers_per_gpu,
            dist=distributed,
            shuffle=False,
            nonshuffler_sampler=dict(type="DistributedSampler"),
        )
    else:
        data_loader = build_dataloader_origin(
            dataset,
            samples_per_gpu=samples_per_gpu,
            workers_per_gpu=cfg.data.workers_per_gpu,
            dist=distributed,
            shuffle=False,
        )

    # build the model and load checkpoint
    cfg.model.train_cfg = None
    model = build_detector(cfg.model, test_cfg=cfg.get("test_cfg"))
    # model = build_model(cfg.model, test_cfg=cfg.get("test_cfg"))
    fp16_cfg = cfg.get("fp16", None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location="cpu")
    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if "CLASSES" in checkpoint.get("meta", {}):
        model.CLASSES = checkpoint["meta"]["CLASSES"]
    else:
        model.CLASSES = dataset.CLASSES
    # palette for visualization in segmentation tasks
    if "PALETTE" in checkpoint.get("meta", {}):
        model.PALETTE = checkpoint["meta"]["PALETTE"]
    elif hasattr(dataset, "PALETTE"):
        # segmentation dataset has `PALETTE` attribute
        model.PALETTE = dataset.PALETTE

    if args.result_file is not None:
        outputs = torch.load(args.result_file)
    elif not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False,
        )
        outputs = custom_multi_gpu_test(
            model, data_loader, args.tmpdir, args.gpu_collect
        )

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f"\nwriting results to {args.out}")
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.eval_options is None else args.eval_options
        if args.show_only:
            eval_kwargs = cfg.get("evaluation", {}).copy()
            # hard-code way to remove EvalHook args
            for key in [
                "interval",
                "tmpdir",
                "start",
                "gpu_collect",
                "save_best",
                "rule",
            ]:
                eval_kwargs.pop(key, None)
            eval_kwargs.update(kwargs)
            dataset.show(outputs, show=True, **eval_kwargs)
        elif args.format_only:
            dataset.format_results(outputs, **kwargs)
        elif args.eval:
            eval_kwargs = cfg.get("evaluation", {}).copy()
            # hard-code way to remove EvalHook args
            for key in [
                "interval",
                "tmpdir",
                "start",
                "gpu_collect",
                "save_best",
                "rule",
            ]:
                eval_kwargs.pop(key, None)
            eval_kwargs.update(dict(metric=args.eval, **kwargs))
            print(eval_kwargs)
            results_dict = dataset.evaluate(outputs, **eval_kwargs)
            print(results_dict)


if __name__ == "__main__":
    torch.multiprocessing.set_start_method(
        "fork"
    )  # use fork workers_per_gpu can be > 1
    main()