sparse4d_head.py 19.4 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# Copyright (c) Horizon Robotics. All rights reserved.
from typing import List, Optional, Tuple, Union
import warnings

import numpy as np
import torch
import torch.nn as nn

from mmcv.cnn.bricks.registry import (
    ATTENTION,
    PLUGIN_LAYERS,
    POSITIONAL_ENCODING,
    FEEDFORWARD_NETWORK,
    NORM_LAYERS,
)
from mmcv.runner import BaseModule, force_fp32
from mmcv.utils import build_from_cfg
from mmdet.core.bbox.builder import BBOX_SAMPLERS
from mmdet.core.bbox.builder import BBOX_CODERS
from mmdet.models import HEADS, LOSSES
from mmdet.core import reduce_mean

from .blocks import DeformableFeatureAggregation as DFG

__all__ = ["Sparse4DHead"]


@HEADS.register_module()
class Sparse4DHead(BaseModule):
    def __init__(
        self,
        instance_bank: dict,
        anchor_encoder: dict,
        graph_model: dict,
        norm_layer: dict,
        ffn: dict,
        deformable_model: dict,
        refine_layer: dict,
        num_decoder: int = 6,
        num_single_frame_decoder: int = -1,
        temp_graph_model: dict = None,
        loss_cls: dict = None,
        loss_reg: dict = None,
        decoder: dict = None,
        sampler: dict = None,
        gt_cls_key: str = "gt_labels_3d",
        gt_reg_key: str = "gt_bboxes_3d",
        reg_weights: List = None,
        operation_order: Optional[List[str]] = None,
        cls_threshold_to_reg: float = -1,
        dn_loss_weight: float = 5.0,
        decouple_attn: bool = True,
        init_cfg: dict = None,
        **kwargs,
    ):
        super(Sparse4DHead, self).__init__(init_cfg)
        self.num_decoder = num_decoder
        self.num_single_frame_decoder = num_single_frame_decoder
        self.gt_cls_key = gt_cls_key
        self.gt_reg_key = gt_reg_key
        self.cls_threshold_to_reg = cls_threshold_to_reg
        self.dn_loss_weight = dn_loss_weight
        self.decouple_attn = decouple_attn

        if reg_weights is None:
            self.reg_weights = [1.0] * 10
        else:
            self.reg_weights = reg_weights

        if operation_order is None:
            operation_order = [
                "temp_gnn",
                "gnn",
                "norm",
                "deformable",
                "norm",
                "ffn",
                "norm",
                "refine",
            ] * num_decoder
            # delete the 'gnn' and 'norm' layers in the first transformer blocks
            operation_order = operation_order[3:]
        self.operation_order = operation_order

        # =========== build modules ===========
        def build(cfg, registry):
            if cfg is None:
                return None
            return build_from_cfg(cfg, registry)

        self.instance_bank = build(instance_bank, PLUGIN_LAYERS)
        self.anchor_encoder = build(anchor_encoder, POSITIONAL_ENCODING)
        self.sampler = build(sampler, BBOX_SAMPLERS)
        self.decoder = build(decoder, BBOX_CODERS)
        self.loss_cls = build(loss_cls, LOSSES)
        self.loss_reg = build(loss_reg, LOSSES)
        self.op_config_map = {
            "temp_gnn": [temp_graph_model, ATTENTION],
            "gnn": [graph_model, ATTENTION],
            "norm": [norm_layer, NORM_LAYERS],
            "ffn": [ffn, FEEDFORWARD_NETWORK],
            "deformable": [deformable_model, ATTENTION],
            "refine": [refine_layer, PLUGIN_LAYERS],
        }
        self.layers = nn.ModuleList(
            [
                build(*self.op_config_map.get(op, [None, None]))
                for op in self.operation_order
            ]
        )
        self.embed_dims = self.instance_bank.embed_dims
        if self.decouple_attn:
            self.fc_before = nn.Linear(
                self.embed_dims, self.embed_dims * 2, bias=False
            )
            self.fc_after = nn.Linear(
                self.embed_dims * 2, self.embed_dims, bias=False
            )
        else:
            self.fc_before = nn.Identity()
            self.fc_after = nn.Identity()

    def init_weights(self):
        for i, op in enumerate(self.operation_order):
            if self.layers[i] is None:
                continue
            elif op != "refine":
                for p in self.layers[i].parameters():
                    if p.dim() > 1:
                        nn.init.xavier_uniform_(p)
        for m in self.modules():
            if hasattr(m, "init_weight"):
                m.init_weight()

    def graph_model(
        self,
        index,
        query,
        key=None,
        value=None,
        query_pos=None,
        key_pos=None,
        **kwargs,
    ):
        if self.decouple_attn:
            query = torch.cat([query, query_pos], dim=-1)
            if key is not None:
                key = torch.cat([key, key_pos], dim=-1)
            query_pos, key_pos = None, None
        if value is not None:
            value = self.fc_before(value)
        return self.fc_after(
            self.layers[index](
                query,
                key,
                value,
                query_pos=query_pos,
                key_pos=key_pos,
                **kwargs,
            )
        )

    def forward(
        self,
        feature_maps: Union[torch.Tensor, List],
        metas: dict,
    ):
        if isinstance(feature_maps, torch.Tensor):
            feature_maps = [feature_maps]
        batch_size = feature_maps[0].shape[0]

        # ========= get instance info ============
        if (
            self.sampler.dn_metas is not None
            and self.sampler.dn_metas["dn_anchor"].shape[0] != batch_size
        ):
            self.sampler.dn_metas = None
        (
            instance_feature,
            anchor,
            temp_instance_feature,
            temp_anchor,
            time_interval,
        ) = self.instance_bank.get(
            batch_size, metas, dn_metas=self.sampler.dn_metas
        )

        # ========= prepare for denosing training ============
        # 1. get dn metas: noisy-anchors and corresponding GT
        # 2. concat learnable instances and noisy instances
        # 3. get attention mask
        attn_mask = None
        dn_metas = None
        temp_dn_reg_target = None
        if self.training and hasattr(self.sampler, "get_dn_anchors"):
            if "instance_id" in metas["img_metas"][0]:
                gt_instance_id = [
                    torch.from_numpy(x["instance_id"]).cuda()
                    for x in metas["img_metas"]
                ]
            else:
                gt_instance_id = None
            dn_metas = self.sampler.get_dn_anchors(
                metas[self.gt_cls_key],
                metas[self.gt_reg_key],
                gt_instance_id,
            )
        if dn_metas is not None:
            (
                dn_anchor,
                dn_reg_target,
                dn_cls_target,
                dn_attn_mask,
                valid_mask,
                dn_id_target,
            ) = dn_metas
            num_dn_anchor = dn_anchor.shape[1]
            if dn_anchor.shape[-1] != anchor.shape[-1]:
                remain_state_dims = anchor.shape[-1] - dn_anchor.shape[-1]
                dn_anchor = torch.cat(
                    [
                        dn_anchor,
                        dn_anchor.new_zeros(
                            batch_size, num_dn_anchor, remain_state_dims
                        ),
                    ],
                    dim=-1,
                )
            anchor = torch.cat([anchor, dn_anchor], dim=1)
            instance_feature = torch.cat(
                [
                    instance_feature,
                    instance_feature.new_zeros(
                        batch_size, num_dn_anchor, instance_feature.shape[-1]
                    ),
                ],
                dim=1,
            )
            num_instance = instance_feature.shape[1]
            num_free_instance = num_instance - num_dn_anchor
            attn_mask = anchor.new_ones(
                (num_instance, num_instance), dtype=torch.bool
            )
            attn_mask[:num_free_instance, :num_free_instance] = False
            attn_mask[num_free_instance:, num_free_instance:] = dn_attn_mask

        anchor_embed = self.anchor_encoder(anchor)
        if temp_anchor is not None:
            temp_anchor_embed = self.anchor_encoder(temp_anchor)
        else:
            temp_anchor_embed = None

        # =================== forward the layers ====================
        prediction = []
        classification = []
        quality = []
        for i, op in enumerate(self.operation_order):
            if self.layers[i] is None:
                continue
            elif op == "temp_gnn":
                instance_feature = self.graph_model(
                    i,
                    instance_feature,
                    temp_instance_feature,
                    temp_instance_feature,
                    query_pos=anchor_embed,
                    key_pos=temp_anchor_embed,
                    attn_mask=attn_mask
                    if temp_instance_feature is None
                    else None,
                )
            elif op == "gnn":
                instance_feature = self.graph_model(
                    i,
                    instance_feature,
                    value=instance_feature,
                    query_pos=anchor_embed,
                    attn_mask=attn_mask,
                )
            elif op == "norm" or op == "ffn":
                instance_feature = self.layers[i](instance_feature)
            elif op == "deformable":
                instance_feature = self.layers[i](
                    instance_feature,
                    anchor,
                    anchor_embed,
                    feature_maps,
                    metas,
                )
            elif op == "refine":
                anchor, cls, qt = self.layers[i](
                    instance_feature,
                    anchor,
                    anchor_embed,
                    time_interval=time_interval,
                    return_cls=(
                        self.training
                        or len(prediction) == self.num_single_frame_decoder - 1
                        or i == len(self.operation_order) - 1
                    ),
                )
                prediction.append(anchor)
                classification.append(cls)
                quality.append(qt)
                if len(prediction) == self.num_single_frame_decoder:
                    instance_feature, anchor = self.instance_bank.update(
                        instance_feature, anchor, cls
                    )
                    if (
                        dn_metas is not None
                        and self.sampler.num_temp_dn_groups > 0
                        and dn_id_target is not None
                    ):
                        (
                            instance_feature,
                            anchor,
                            temp_dn_reg_target,
                            temp_dn_cls_target,
                            temp_valid_mask,
                            dn_id_target,
                        ) = self.sampler.update_dn(
                            instance_feature,
                            anchor,
                            dn_reg_target,
                            dn_cls_target,
                            valid_mask,
                            dn_id_target,
                            self.instance_bank.num_anchor,
                            self.instance_bank.mask,
                        )
                if i != len(self.operation_order) - 1:
                    anchor_embed = self.anchor_encoder(anchor)
                if (
                    len(prediction) > self.num_single_frame_decoder
                    and temp_anchor_embed is not None
                ):
                    temp_anchor_embed = anchor_embed[
                        :, : self.instance_bank.num_temp_instances
                    ]
            else:
                raise NotImplementedError(f"{op} is not supported.")

        output = {}

        # split predictions of learnable instances and noisy instances
        if dn_metas is not None:
            dn_classification = [
                x[:, num_free_instance:] for x in classification
            ]
            classification = [x[:, :num_free_instance] for x in classification]
            dn_prediction = [x[:, num_free_instance:] for x in prediction]
            prediction = [x[:, :num_free_instance] for x in prediction]
            quality = [
                x[:, :num_free_instance] if x is not None else None
                for x in quality
            ]
            output.update(
                {
                    "dn_prediction": dn_prediction,
                    "dn_classification": dn_classification,
                    "dn_reg_target": dn_reg_target,
                    "dn_cls_target": dn_cls_target,
                    "dn_valid_mask": valid_mask,
                }
            )
            if temp_dn_reg_target is not None:
                output.update(
                    {
                        "temp_dn_reg_target": temp_dn_reg_target,
                        "temp_dn_cls_target": temp_dn_cls_target,
                        "temp_dn_valid_mask": temp_valid_mask,
                        "dn_id_target": dn_id_target,
                    }
                )
                dn_cls_target = temp_dn_cls_target
                valid_mask = temp_valid_mask
            dn_instance_feature = instance_feature[:, num_free_instance:]
            dn_anchor = anchor[:, num_free_instance:]
            instance_feature = instance_feature[:, :num_free_instance]
            anchor = anchor[:, :num_free_instance]
            cls = cls[:, :num_free_instance]

            # cache dn_metas for temporal denoising
            self.sampler.cache_dn(
                dn_instance_feature,
                dn_anchor,
                dn_cls_target,
                valid_mask,
                dn_id_target,
            )
        output.update(
            {
                "classification": classification,
                "prediction": prediction,
                "quality": quality,
            }
        )

        # cache current instances for temporal modeling
        self.instance_bank.cache(
            instance_feature, anchor, cls, metas, feature_maps
        )
        if not self.training:
            instance_id = self.instance_bank.get_instance_id(
                cls, anchor, self.decoder.score_threshold
            )
            output["instance_id"] = instance_id
        return output

    @force_fp32(apply_to=("model_outs"))
    def loss(self, model_outs, data, feature_maps=None):
        # ===================== prediction losses ======================
        cls_scores = model_outs["classification"]
        reg_preds = model_outs["prediction"]
        quality = model_outs["quality"]
        output = {}
        for decoder_idx, (cls, reg, qt) in enumerate(
            zip(cls_scores, reg_preds, quality)
        ):
            reg = reg[..., : len(self.reg_weights)]
            cls_target, reg_target, reg_weights = self.sampler.sample(
                cls,
                reg,
                data[self.gt_cls_key],
                data[self.gt_reg_key],
            )
            reg_target = reg_target[..., : len(self.reg_weights)]
            mask = torch.logical_not(torch.all(reg_target == 0, dim=-1))
            mask_valid = mask.clone()

            num_pos = max(
                reduce_mean(torch.sum(mask).to(dtype=reg.dtype)), 1.0
            )
            if self.cls_threshold_to_reg > 0:
                threshold = self.cls_threshold_to_reg
                mask = torch.logical_and(
                    mask, cls.max(dim=-1).values.sigmoid() > threshold
                )

            cls = cls.flatten(end_dim=1)
            cls_target = cls_target.flatten(end_dim=1)
            cls_loss = self.loss_cls(cls, cls_target, avg_factor=num_pos)

            mask = mask.reshape(-1)
            reg_weights = reg_weights * reg.new_tensor(self.reg_weights)
            reg_target = reg_target.flatten(end_dim=1)[mask]
            reg = reg.flatten(end_dim=1)[mask]
            reg_weights = reg_weights.flatten(end_dim=1)[mask]
            reg_target = torch.where(
                reg_target.isnan(), reg.new_tensor(0.0), reg_target
            )
            cls_target = cls_target[mask]
            if qt is not None:
                qt = qt.flatten(end_dim=1)[mask]

            reg_loss = self.loss_reg(
                reg,
                reg_target,
                weight=reg_weights,
                avg_factor=num_pos,
                suffix=f"_{decoder_idx}",
                quality=qt,
                cls_target=cls_target,
            )

            output[f"loss_cls_{decoder_idx}"] = cls_loss
            output.update(reg_loss)

        if "dn_prediction" not in model_outs:
            return output

        # ===================== denoising losses ======================
        dn_cls_scores = model_outs["dn_classification"]
        dn_reg_preds = model_outs["dn_prediction"]

        (
            dn_valid_mask,
            dn_cls_target,
            dn_reg_target,
            dn_pos_mask,
            reg_weights,
            num_dn_pos,
        ) = self.prepare_for_dn_loss(model_outs)
        for decoder_idx, (cls, reg) in enumerate(
            zip(dn_cls_scores, dn_reg_preds)
        ):
            if (
                "temp_dn_valid_mask" in model_outs
                and decoder_idx == self.num_single_frame_decoder
            ):
                (
                    dn_valid_mask,
                    dn_cls_target,
                    dn_reg_target,
                    dn_pos_mask,
                    reg_weights,
                    num_dn_pos,
                ) = self.prepare_for_dn_loss(model_outs, prefix="temp_")

            cls_loss = self.loss_cls(
                cls.flatten(end_dim=1)[dn_valid_mask],
                dn_cls_target,
                avg_factor=num_dn_pos,
            )
            reg_loss = self.loss_reg(
                reg.flatten(end_dim=1)[dn_valid_mask][dn_pos_mask][
                    ..., : len(self.reg_weights)
                ],
                dn_reg_target,
                avg_factor=num_dn_pos,
                weight=reg_weights,
                suffix=f"_dn_{decoder_idx}",
            )
            output[f"loss_cls_dn_{decoder_idx}"] = cls_loss
            output.update(reg_loss)
        return output

    def prepare_for_dn_loss(self, model_outs, prefix=""):
        dn_valid_mask = model_outs[f"{prefix}dn_valid_mask"].flatten(end_dim=1)
        dn_cls_target = model_outs[f"{prefix}dn_cls_target"].flatten(
            end_dim=1
        )[dn_valid_mask]
        dn_reg_target = model_outs[f"{prefix}dn_reg_target"].flatten(
            end_dim=1
        )[dn_valid_mask][..., : len(self.reg_weights)]
        dn_pos_mask = dn_cls_target >= 0
        dn_reg_target = dn_reg_target[dn_pos_mask]
        reg_weights = dn_reg_target.new_tensor(self.reg_weights)[None].tile(
            dn_reg_target.shape[0], 1
        )
        num_dn_pos = max(
            reduce_mean(torch.sum(dn_valid_mask).to(dtype=reg_weights.dtype)),
            1.0,
        )
        return (
            dn_valid_mask,
            dn_cls_target,
            dn_reg_target,
            dn_pos_mask,
            reg_weights,
            num_dn_pos,
        )

    @force_fp32(apply_to=("model_outs"))
    def post_process(self, model_outs, output_idx=-1):
        return self.decoder.decode(
            model_outs["classification"],
            model_outs["prediction"],
            model_outs.get("instance_id"),
            model_outs.get("quality"),
            output_idx=output_idx,
        )