target.py 15.6 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import torch
import numpy as np
import torch.nn.functional as F
from scipy.optimize import linear_sum_assignment

from mmdet.core.bbox.builder import BBOX_SAMPLERS

from projects.mmdet3d_plugin.core.box3d import *
from ..base_target import BaseTargetWithDenoising


__all__ = ["SparseBox3DTarget"]


@BBOX_SAMPLERS.register_module()
class SparseBox3DTarget(BaseTargetWithDenoising):
    def __init__(
        self,
        cls_weight=2.0,
        alpha=0.25,
        gamma=2,
        eps=1e-12,
        box_weight=0.25,
        reg_weights=None,
        cls_wise_reg_weights=None,
        num_dn_groups=0,
        dn_noise_scale=0.5,
        max_dn_gt=32,
        add_neg_dn=True,
        num_temp_dn_groups=0,
    ):
        super(SparseBox3DTarget, self).__init__(
            num_dn_groups, num_temp_dn_groups
        )
        self.cls_weight = cls_weight
        self.box_weight = box_weight
        self.alpha = alpha
        self.gamma = gamma
        self.eps = eps
        self.reg_weights = reg_weights
        if self.reg_weights is None:
            self.reg_weights = [1.0] * 8 + [0.0] * 2
        self.cls_wise_reg_weights = cls_wise_reg_weights
        self.dn_noise_scale = dn_noise_scale
        self.max_dn_gt = max_dn_gt
        self.add_neg_dn = add_neg_dn

    def encode_reg_target(self, box_target, device=None):
        outputs = []
        for box in box_target:
            output = torch.cat(
                [
                    box[..., [X, Y, Z]],
                    box[..., [W, L, H]].log(),
                    torch.sin(box[..., YAW]).unsqueeze(-1),
                    torch.cos(box[..., YAW]).unsqueeze(-1),
                    box[..., YAW + 1 :],
                ],
                dim=-1,
            )
            if device is not None:
                output = output.to(device=device)
            outputs.append(output)
        return outputs

    def sample(
        self,
        cls_pred,
        box_pred,
        cls_target,
        box_target,
    ):
        bs, num_pred, num_cls = cls_pred.shape

        cls_cost = self._cls_cost(cls_pred, cls_target)

        box_target = self.encode_reg_target(box_target, box_pred.device)

        instance_reg_weights = []
        for i in range(len(box_target)):
            weights = torch.logical_not(box_target[i].isnan()).to(
                dtype=box_target[i].dtype
            )
            if self.cls_wise_reg_weights is not None:
                for cls, weight in self.cls_wise_reg_weights.items():
                    weights = torch.where(
                        (cls_target[i] == cls)[:, None],
                        weights.new_tensor(weight),
                        weights,
                    )
            instance_reg_weights.append(weights)
        box_cost = self._box_cost(box_pred, box_target, instance_reg_weights)

        indices = []
        for i in range(bs):
            if cls_cost[i] is not None and box_cost[i] is not None:
                cost = (cls_cost[i] + box_cost[i]).detach().cpu().numpy()
                cost = np.where(np.isneginf(cost) | np.isnan(cost), 1e8, cost)
                assign = linear_sum_assignment(cost)
                indices.append(
                    [cls_pred.new_tensor(x, dtype=torch.int64) for x in assign]
                )
            else:
                indices.append([None, None])

        output_cls_target = (
            cls_target[0].new_ones([bs, num_pred], dtype=torch.long) * num_cls
        )
        output_box_target = box_pred.new_zeros(box_pred.shape)
        output_reg_weights = box_pred.new_zeros(box_pred.shape)
        for i, (pred_idx, target_idx) in enumerate(indices):
            if len(cls_target[i]) == 0:
                continue
            output_cls_target[i, pred_idx] = cls_target[i][target_idx]
            output_box_target[i, pred_idx] = box_target[i][target_idx]
            output_reg_weights[i, pred_idx] = instance_reg_weights[i][
                target_idx
            ]
        return output_cls_target, output_box_target, output_reg_weights

    def _cls_cost(self, cls_pred, cls_target):
        bs = cls_pred.shape[0]
        cls_pred = cls_pred.sigmoid()
        cost = []
        for i in range(bs):
            if len(cls_target[i]) > 0:
                neg_cost = (
                    -(1 - cls_pred[i] + self.eps).log()
                    * (1 - self.alpha)
                    * cls_pred[i].pow(self.gamma)
                )
                pos_cost = (
                    -(cls_pred[i] + self.eps).log()
                    * self.alpha
                    * (1 - cls_pred[i]).pow(self.gamma)
                )
                cost.append(
                    (pos_cost[:, cls_target[i]] - neg_cost[:, cls_target[i]])
                    * self.cls_weight
                )
            else:
                cost.append(None)
        return cost

    def _box_cost(self, box_pred, box_target, instance_reg_weights):
        bs = box_pred.shape[0]
        cost = []
        for i in range(bs):
            if len(box_target[i]) > 0:
                cost.append(
                    torch.sum(
                        torch.abs(box_pred[i, :, None] - box_target[i][None])
                        * instance_reg_weights[i][None]
                        * box_pred.new_tensor(self.reg_weights),
                        dim=-1,
                    )
                    * self.box_weight
                )
            else:
                cost.append(None)
        return cost

    def get_dn_anchors(self, cls_target, box_target, gt_instance_id=None):
        if self.num_dn_groups <= 0:
            return None
        if self.num_temp_dn_groups <= 0:
            gt_instance_id = None

        if self.max_dn_gt > 0:
            cls_target = [x[: self.max_dn_gt] for x in cls_target]
            box_target = [x[: self.max_dn_gt] for x in box_target]
            if gt_instance_id is not None:
                gt_instance_id = [x[: self.max_dn_gt] for x in gt_instance_id]

        max_dn_gt = max([len(x) for x in cls_target])
        if max_dn_gt == 0:
            return None
        cls_target = torch.stack(
            [
                F.pad(x, (0, max_dn_gt - x.shape[0]), value=-1)
                for x in cls_target
            ]
        )
        box_target = self.encode_reg_target(box_target, cls_target.device)
        box_target = torch.stack(
            [F.pad(x, (0, 0, 0, max_dn_gt - x.shape[0])) for x in box_target]
        )
        box_target = torch.where(
            cls_target[..., None] == -1, box_target.new_tensor(0), box_target
        )
        if gt_instance_id is not None:
            gt_instance_id = torch.stack(
                [
                    F.pad(x, (0, max_dn_gt - x.shape[0]), value=-1)
                    for x in gt_instance_id
                ]
            )

        bs, num_gt, state_dims = box_target.shape
        if self.num_dn_groups > 1:
            cls_target = cls_target.tile(self.num_dn_groups, 1)
            box_target = box_target.tile(self.num_dn_groups, 1, 1)
            if gt_instance_id is not None:
                gt_instance_id = gt_instance_id.tile(self.num_dn_groups, 1)

        noise = torch.rand_like(box_target) * 2 - 1
        noise *= box_target.new_tensor(self.dn_noise_scale)
        dn_anchor = box_target + noise
        if self.add_neg_dn:
            noise_neg = torch.rand_like(box_target) + 1
            flag = torch.where(
                torch.rand_like(box_target) > 0.5,
                noise_neg.new_tensor(1),
                noise_neg.new_tensor(-1),
            )
            noise_neg *= flag
            noise_neg *= box_target.new_tensor(self.dn_noise_scale)
            dn_anchor = torch.cat([dn_anchor, box_target + noise_neg], dim=1)
            num_gt *= 2

        box_cost = self._box_cost(
            dn_anchor, box_target, torch.ones_like(box_target)
        )
        dn_box_target = torch.zeros_like(dn_anchor)
        dn_cls_target = -torch.ones_like(cls_target) * 3
        if gt_instance_id is not None:
            dn_id_target = -torch.ones_like(gt_instance_id)
        if self.add_neg_dn:
            dn_cls_target = torch.cat([dn_cls_target, dn_cls_target], dim=1)
            if gt_instance_id is not None:
                dn_id_target = torch.cat([dn_id_target, dn_id_target], dim=1)

        for i in range(dn_anchor.shape[0]):
            cost = box_cost[i].cpu().numpy()
            anchor_idx, gt_idx = linear_sum_assignment(cost)
            anchor_idx = dn_anchor.new_tensor(anchor_idx, dtype=torch.int64)
            gt_idx = dn_anchor.new_tensor(gt_idx, dtype=torch.int64)
            dn_box_target[i, anchor_idx] = box_target[i, gt_idx]
            dn_cls_target[i, anchor_idx] = cls_target[i, gt_idx]
            if gt_instance_id is not None:
                dn_id_target[i, anchor_idx] = gt_instance_id[i, gt_idx]
        dn_anchor = (
            dn_anchor.reshape(self.num_dn_groups, bs, num_gt, state_dims)
            .permute(1, 0, 2, 3)
            .flatten(1, 2)
        )
        dn_box_target = (
            dn_box_target.reshape(self.num_dn_groups, bs, num_gt, state_dims)
            .permute(1, 0, 2, 3)
            .flatten(1, 2)
        )
        dn_cls_target = (
            dn_cls_target.reshape(self.num_dn_groups, bs, num_gt)
            .permute(1, 0, 2)
            .flatten(1)
        )
        if gt_instance_id is not None:
            dn_id_target = (
                dn_id_target.reshape(self.num_dn_groups, bs, num_gt)
                .permute(1, 0, 2)
                .flatten(1)
            )
        else:
            dn_id_target = None
        valid_mask = dn_cls_target >= 0
        if self.add_neg_dn:
            cls_target = (
                torch.cat([cls_target, cls_target], dim=1)
                .reshape(self.num_dn_groups, bs, num_gt)
                .permute(1, 0, 2)
                .flatten(1)
            )
            valid_mask = torch.logical_or(
                valid_mask, ((cls_target >= 0) & (dn_cls_target == -3))
            )  # valid denotes the items is not from pad.
        attn_mask = dn_box_target.new_ones(
            num_gt * self.num_dn_groups, num_gt * self.num_dn_groups
        )
        for i in range(self.num_dn_groups):
            start = num_gt * i
            end = start + num_gt
            attn_mask[start:end, start:end] = 0
        attn_mask = attn_mask == 1
        dn_cls_target = dn_cls_target.long()
        return (
            dn_anchor,
            dn_box_target,
            dn_cls_target,
            attn_mask,
            valid_mask,
            dn_id_target,
        )

    def update_dn(
        self,
        instance_feature,
        anchor,
        dn_reg_target,
        dn_cls_target,
        valid_mask,
        dn_id_target,
        num_noraml_anchor,
        temporal_valid_mask,
    ):
        bs, num_anchor = instance_feature.shape[:2]
        if temporal_valid_mask is None:
            self.dn_metas = None
        if self.dn_metas is None or num_noraml_anchor >= num_anchor:
            return (
                instance_feature,
                anchor,
                dn_reg_target,
                dn_cls_target,
                valid_mask,
                dn_id_target,
            )

        # split instance_feature and anchor into non-dn and dn
        num_dn = num_anchor - num_noraml_anchor
        dn_instance_feature = instance_feature[:, -num_dn:]
        dn_anchor = anchor[:, -num_dn:]
        instance_feature = instance_feature[:, :num_noraml_anchor]
        anchor = anchor[:, :num_noraml_anchor]

        # reshape all dn metas from (bs,num_all_dn,xxx)
        # to (bs, dn_group, num_dn_per_group, xxx)
        num_dn_groups = self.num_dn_groups
        num_dn = num_dn // num_dn_groups
        dn_feat = dn_instance_feature.reshape(bs, num_dn_groups, num_dn, -1)
        dn_anchor = dn_anchor.reshape(bs, num_dn_groups, num_dn, -1)
        dn_reg_target = dn_reg_target.reshape(bs, num_dn_groups, num_dn, -1)
        dn_cls_target = dn_cls_target.reshape(bs, num_dn_groups, num_dn)
        valid_mask = valid_mask.reshape(bs, num_dn_groups, num_dn)
        if dn_id_target is not None:
            dn_id = dn_id_target.reshape(bs, num_dn_groups, num_dn)

        # update temp_dn_metas by instance_id
        temp_dn_feat = self.dn_metas["dn_instance_feature"]
        _, num_temp_dn_groups, num_temp_dn = temp_dn_feat.shape[:3]
        temp_dn_id = self.dn_metas["dn_id_target"]

        # bs, num_temp_dn_groups, num_temp_dn, num_dn
        match = temp_dn_id[..., None] == dn_id[:, :num_temp_dn_groups, None]
        temp_reg_target = (
            match[..., None] * dn_reg_target[:, :num_temp_dn_groups, None]
        ).sum(dim=3)
        temp_cls_target = torch.where(
            torch.all(torch.logical_not(match), dim=-1),
            self.dn_metas["dn_cls_target"].new_tensor(-1),
            self.dn_metas["dn_cls_target"],
        )
        temp_valid_mask = self.dn_metas["valid_mask"]
        temp_dn_anchor = self.dn_metas["dn_anchor"]

        # handle the misalignment the length of temp_dn to dn caused by the
        # change of num_gt, then concat the temp_dn and dn
        temp_dn_metas = [
            temp_dn_feat,
            temp_dn_anchor,
            temp_reg_target,
            temp_cls_target,
            temp_valid_mask,
            temp_dn_id,
        ]
        dn_metas = [
            dn_feat,
            dn_anchor,
            dn_reg_target,
            dn_cls_target,
            valid_mask,
            dn_id,
        ]
        output = []
        for i, (temp_meta, meta) in enumerate(zip(temp_dn_metas, dn_metas)):
            if num_temp_dn < num_dn:
                pad = (0, num_dn - num_temp_dn)
                if temp_meta.dim() == 4:
                    pad = (0, 0) + pad
                else:
                    assert temp_meta.dim() == 3
                temp_meta = F.pad(temp_meta, pad, value=0)
            else:
                temp_meta = temp_meta[:, :, :num_dn]
            mask = temporal_valid_mask[:, None, None]
            if meta.dim() == 4:
                mask = mask.unsqueeze(dim=-1)
            temp_meta = torch.where(
                mask, temp_meta, meta[:, :num_temp_dn_groups]
            )
            meta = torch.cat([temp_meta, meta[:, num_temp_dn_groups:]], dim=1)
            meta = meta.flatten(1, 2)
            output.append(meta)
        output[0] = torch.cat([instance_feature, output[0]], dim=1)
        output[1] = torch.cat([anchor, output[1]], dim=1)
        return output

    def cache_dn(
        self,
        dn_instance_feature,
        dn_anchor,
        dn_cls_target,
        valid_mask,
        dn_id_target,
    ):
        if self.num_temp_dn_groups < 0:
            return
        num_dn_groups = self.num_dn_groups
        bs, num_dn = dn_instance_feature.shape[:2]
        num_temp_dn = num_dn // num_dn_groups
        temp_group_mask = (
            torch.randperm(num_dn_groups) < self.num_temp_dn_groups
        )
        temp_group_mask = temp_group_mask.to(device=dn_anchor.device)
        dn_instance_feature = dn_instance_feature.detach().reshape(
            bs, num_dn_groups, num_temp_dn, -1
        )[:, temp_group_mask]
        dn_anchor = dn_anchor.detach().reshape(
            bs, num_dn_groups, num_temp_dn, -1
        )[:, temp_group_mask]
        dn_cls_target = dn_cls_target.reshape(bs, num_dn_groups, num_temp_dn)[
            :, temp_group_mask
        ]
        valid_mask = valid_mask.reshape(bs, num_dn_groups, num_temp_dn)[
            :, temp_group_mask
        ]
        if dn_id_target is not None:
            dn_id_target = dn_id_target.reshape(
                bs, num_dn_groups, num_temp_dn
            )[:, temp_group_mask]
        self.dn_metas = dict(
            dn_instance_feature=dn_instance_feature,
            dn_anchor=dn_anchor,
            dn_cls_target=dn_cls_target,
            valid_mask=valid_mask,
            dn_id_target=dn_id_target,
        )