utils.py 7.4 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import copy

import cv2
import numpy as np
import torch

from projects.mmdet3d_plugin.core.box3d import *


def box3d_to_corners(box3d):
    if isinstance(box3d, torch.Tensor):
        box3d = box3d.detach().cpu().numpy()
    corners_norm = np.stack(np.unravel_index(np.arange(8), [2] * 3), axis=1)
    corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]]
    # use relative origin [0.5, 0.5, 0]
    corners_norm = corners_norm - np.array([0.5, 0.5, 0.5])
    corners = box3d[:, None, [W, L, H]] * corners_norm.reshape([1, 8, 3])

    # rotate around z axis
    rot_cos = np.cos(box3d[:, YAW])
    rot_sin = np.sin(box3d[:, YAW])
    rot_mat = np.tile(np.eye(3)[None], (box3d.shape[0], 1, 1))
    rot_mat[:, 0, 0] = rot_cos
    rot_mat[:, 0, 1] = -rot_sin
    rot_mat[:, 1, 0] = rot_sin
    rot_mat[:, 1, 1] = rot_cos
    corners = (rot_mat[:, None] @ corners[..., None]).squeeze(axis=-1)
    corners += box3d[:, None, :3]
    return corners


def plot_rect3d_on_img(
    img, num_rects, rect_corners, color=(0, 255, 0), thickness=1
):
    """Plot the boundary lines of 3D rectangular on 2D images.

    Args:
        img (numpy.array): The numpy array of image.
        num_rects (int): Number of 3D rectangulars.
        rect_corners (numpy.array): Coordinates of the corners of 3D
            rectangulars. Should be in the shape of [num_rect, 8, 2].
        color (tuple[int], optional): The color to draw bboxes.
            Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    line_indices = (
        (0, 1),
        (0, 3),
        (0, 4),
        (1, 2),
        (1, 5),
        (3, 2),
        (3, 7),
        (4, 5),
        (4, 7),
        (2, 6),
        (5, 6),
        (6, 7),
    )
    h, w = img.shape[:2]
    for i in range(num_rects):
        corners = np.clip(rect_corners[i], -1e4, 1e5).astype(np.int32)
        for start, end in line_indices:
            if (
                (corners[start, 1] >= h or corners[start, 1] < 0)
                or (corners[start, 0] >= w or corners[start, 0] < 0)
            ) and (
                (corners[end, 1] >= h or corners[end, 1] < 0)
                or (corners[end, 0] >= w or corners[end, 0] < 0)
            ):
                continue
            if isinstance(color[0], int):
                cv2.line(
                    img,
                    (corners[start, 0], corners[start, 1]),
                    (corners[end, 0], corners[end, 1]),
                    color,
                    thickness,
                    cv2.LINE_AA,
                )
            else:
                cv2.line(
                    img,
                    (corners[start, 0], corners[start, 1]),
                    (corners[end, 0], corners[end, 1]),
                    color[i],
                    thickness,
                    cv2.LINE_AA,
                )

    return img.astype(np.uint8)


def draw_lidar_bbox3d_on_img(
    bboxes3d, raw_img, lidar2img_rt, img_metas=None, color=(0, 255, 0), thickness=1
):
    """Project the 3D bbox on 2D plane and draw on input image.

    Args:
        bboxes3d (:obj:`LiDARInstance3DBoxes`):
            3d bbox in lidar coordinate system to visualize.
        raw_img (numpy.array): The numpy array of image.
        lidar2img_rt (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
        img_metas (dict): Useless here.
        color (tuple[int], optional): The color to draw bboxes.
            Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    img = raw_img.copy()
    # corners_3d = bboxes3d.corners
    corners_3d = box3d_to_corners(bboxes3d)
    num_bbox = corners_3d.shape[0]
    pts_4d = np.concatenate(
        [corners_3d.reshape(-1, 3), np.ones((num_bbox * 8, 1))], axis=-1
    )
    lidar2img_rt = copy.deepcopy(lidar2img_rt).reshape(4, 4)
    if isinstance(lidar2img_rt, torch.Tensor):
        lidar2img_rt = lidar2img_rt.cpu().numpy()
    pts_2d = pts_4d @ lidar2img_rt.T

    pts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=1e5)
    pts_2d[:, 0] /= pts_2d[:, 2]
    pts_2d[:, 1] /= pts_2d[:, 2]
    imgfov_pts_2d = pts_2d[..., :2].reshape(num_bbox, 8, 2)

    return plot_rect3d_on_img(img, num_bbox, imgfov_pts_2d, color, thickness)


def draw_points_on_img(points, img, lidar2img_rt, color=(0, 255, 0), circle=4):
    img = img.copy()
    N = points.shape[0]
    points = points.cpu().numpy()
    lidar2img_rt = copy.deepcopy(lidar2img_rt).reshape(4, 4)
    if isinstance(lidar2img_rt, torch.Tensor):
        lidar2img_rt = lidar2img_rt.cpu().numpy()
    pts_2d = (
        np.sum(points[:, :, None] * lidar2img_rt[:3, :3], axis=-1)
        + lidar2img_rt[:3, 3]
    )
    pts_2d[..., 2] = np.clip(pts_2d[..., 2], a_min=1e-5, a_max=1e5)
    pts_2d = pts_2d[..., :2] / pts_2d[..., 2:3]
    pts_2d = np.clip(pts_2d, -1e4, 1e4).astype(np.int32)

    for i in range(N):
        for point in pts_2d[i]:
            if isinstance(color[0], int):
                color_tmp = color
            else:
                color_tmp = color[i]
            cv2.circle(img, point.tolist(), circle, color_tmp, thickness=-1)
    return img.astype(np.uint8)


def draw_lidar_bbox3d_on_bev(
    bboxes_3d, bev_size, bev_range=115, color=(255, 0, 0), thickness=3):
    if isinstance(bev_size, (list, tuple)):
        bev_h, bev_w = bev_size
    else:
        bev_h, bev_w = bev_size, bev_size
    bev = np.zeros([bev_h, bev_w, 3])

    marking_color = (127, 127, 127)
    bev_resolution = bev_range / bev_h
    for cir in range(int(bev_range / 2 / 10)):
        cv2.circle(
            bev,
            (int(bev_h / 2), int(bev_w / 2)),
            int((cir + 1) * 10 / bev_resolution),
            marking_color,
            thickness=thickness,
        )
    cv2.line(
        bev,
        (0, int(bev_h / 2)),
        (bev_w, int(bev_h / 2)),
        marking_color,
    )
    cv2.line(
        bev,
        (int(bev_w / 2), 0),
        (int(bev_w / 2), bev_h),
        marking_color,
    )
    if len(bboxes_3d) != 0:
        bev_corners = box3d_to_corners(bboxes_3d)[:, [0, 3, 4, 7]][
            ..., [0, 1]
        ]
        xs = bev_corners[..., 0] / bev_resolution + bev_w / 2
        ys = -bev_corners[..., 1] / bev_resolution + bev_h / 2
        for obj_idx, (x, y) in enumerate(zip(xs, ys)):
            for p1, p2 in ((0, 1), (0, 2), (1, 3), (2, 3)):
                if isinstance(color[0], (list, tuple)):
                    tmp = color[obj_idx]
                else:
                    tmp = color
                cv2.line(
                    bev,
                    (int(x[p1]), int(y[p1])),
                    (int(x[p2]), int(y[p2])),
                    tmp,
                    thickness=thickness,
                )
    return bev.astype(np.uint8)


def draw_lidar_bbox3d(bboxes_3d, imgs, lidar2imgs, color=(255, 0, 0)):
    vis_imgs = []
    for i, (img, lidar2img) in enumerate(zip(imgs, lidar2imgs)):
        vis_imgs.append(
            draw_lidar_bbox3d_on_img(bboxes_3d, img, lidar2img, color=color)
        )

    num_imgs = len(vis_imgs)
    if num_imgs < 4 or num_imgs % 2 != 0:
        vis_imgs = np.concatenate(vis_imgs, axis=1)
    else:
        vis_imgs = np.concatenate([
            np.concatenate(vis_imgs[:num_imgs//2], axis=1),
            np.concatenate(vis_imgs[num_imgs//2:], axis=1)
        ], axis=0)

    bev = draw_lidar_bbox3d_on_bev(bboxes_3d, vis_imgs.shape[0], color=color)
    vis_imgs = np.concatenate([bev, vis_imgs], axis=1)
    return vis_imgs