vis_occ.py 12.9 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os
import cv2
import logging
import argparse
import importlib
import torch
import numpy as np
from tqdm import tqdm
from mmcv import Config, DictAction
from mmdet.apis import set_random_seed
from mmdet3d.datasets import build_dataset, build_dataloader
from mmcv.parallel import MMDataParallel
from mmcv.runner import load_checkpoint
from mmdet3d.models import build_model
import mmdet
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,
                         wrap_fp16_model)

import sys
sys.path.insert(0, os.getcwd())

if mmdet.__version__ > '2.23.0':
    # If mmdet version > 2.23.0, setup_multi_processes would be imported and
    # used from mmdet instead of mmdet3d.
    from mmdet.utils import setup_multi_processes
else:
    from mmdet3d.utils import setup_multi_processes

try:
    # If mmdet version > 2.23.0, compat_cfg would be imported and
    # used from mmdet instead of mmdet3d.
    from mmdet.utils import compat_cfg
except ImportError:
    from mmdet3d.utils import compat_cfg

occ_class_names = [
    'others', 'barrier', 'bicycle', 'bus', 'car', 'construction_vehicle',
    'motorcycle', 'pedestrian', 'traffic_cone', 'trailer', 'truck',
    'driveable_surface', 'other_flat', 'sidewalk',
    'terrain', 'manmade', 'vegetation', 'free'
]

color_map = np.array([
    [0, 0, 0, 255],    # others
    [255, 120, 50, 255],  # barrier              orangey
    [255, 192, 203, 255],  # bicycle              pink
    [255, 255, 0, 255],  # bus                  yellow
    [0, 150, 245, 255],  # car                  blue
    [0, 255, 255, 255],  # construction_vehicle cyan
    [200, 180, 0, 255],  # motorcycle           dark orange
    [255, 0, 0, 255],  # pedestrian           red
    [255, 240, 150, 255],  # traffic_cone         light yellow
    [135, 60, 0, 255],  # trailer              brown
    [160, 32, 240, 255],  # truck                purple
    [255, 0, 255, 255],  # driveable_surface    dark pink
    [175,   0,  75, 255],       # other_flat           dark red
    [75, 0, 75, 255],  # sidewalk             dard purple
    [150, 240, 80, 255],  # terrain              light green
    [230, 230, 250, 255],  # manmade              white
    [0, 175, 0, 255],  # vegetation           green
    [255, 255, 255, 255],  # free             white
], dtype=np.uint8)

# # from matplotlib import colors
# # hex_code_list = [
# #     '#000000', '#D3D3D3', '#BC8F8F', '#F08080', '#A52A2A', '#FF0000', '#FFA07A', '#A0522D', '#FFE4C4', '#FFE4B5',  \
# #     '#DAA520', '#FFD700', '#F0E68C', '#BDB76B', '#808000', '#FFFF00', '#9ACD32', '#7FFF00', '#8FBC8F', '#90EE90',  \
# #     '#32CD32', '#008000', '#00FF00', '#00FA9A', '#7FFFD4', '#48D1CC', '#2F4F4F', '#ADD8E6', '#87CEFA', '#DC143C',  \
# #     '#696969', '#9370DB', '#8A2BE2', '#9400D3', '#DDA0DD', '#FF00FF', '#C71585', '#DB7093', '#FFB6C1', '#bf9b0c',  \
# #     '#01889f', '#bb3f3f', '#1805db', '#48c072', '#fffd37', '#c44240', '#6140ef', '#ceaefa', '#04f489', '#c6f808',  \
# #     '#507b9c', '#cffdbc', '#ac7e04', '#01386a', '#ffb7ce', '#ffd1df', '#D2691E', '#FFDAB9', '#a55af4', '#95d0fc',  \
# #     ]
# # hex_code_list = np.array(hex_code_list).reshape(6,10).transpose(1,0).reshape(-1)
# # pano_color_map = np.array([[int(value * 255) for value in colors.hex2color(hex_code)] for hex_code in hex_code_list], dtype=np.uint8)

import matplotlib.pyplot as plt
from scipy.ndimage import rotate
def draw_fig(tensor, name='tensor_image_colored_no_white.png'):
    tensor = tensor.squeeze(0)
    tensor = rotate(tensor, -90, reshape=False)
    tensor = np.flip(tensor, axis=1)
    fig, ax = plt.subplots(figsize=(4, 4))
    ax.imshow(tensor, cmap='viridis')
    plt.axis('off')
    plt.savefig(name, bbox_inches='tight', pad_inches=0)
    plt.clf()
    
def generate_rgb_color(number):
    red = (number % 256)
    green = ((number // 256) % 256)
    blue = ((number // 65536) % 256)
    return [red, green, blue]
pano_color_map = np.array([generate_rgb_color(number) for number in np.random.randint(0, 65536*256, 256)])

inst_class_ids=[2, 3, 4, 5, 6, 7, 9, 10]

def occ2img(semantics=None, is_pano=False, panoptics=None):
    H, W, D = semantics.shape

    free_id = len(occ_class_names) - 1
    semantics_2d = np.ones([H, W], dtype=np.int32) * free_id
    for i in range(D):
        semantics_i = semantics[..., i]
        non_free_mask = (semantics_i != free_id)
        semantics_2d[non_free_mask] = semantics_i[non_free_mask]

    viz = color_map[semantics_2d]
    viz = viz[..., :3]

    inst_mask = np.zeros_like(semantics_2d).astype(np.bool)
    for ind in inst_class_ids:
        inst_mask[semantics_2d==ind] = True
    
    if is_pano:
        panoptics_2d = np.ones([H, W], dtype=np.int32) * 0
        for i in range(D):
            panoptics_i = panoptics[..., i]
            semantics_i = semantics[..., i]
            non_free_mask = (semantics_i != free_id)
            panoptics_2d[non_free_mask] = panoptics_i[non_free_mask]
        
        
        # # panoptics_2d = panoptics_2d%60
        
        
        viz_pano = pano_color_map[panoptics_2d]
        viz[inst_mask,:] = viz_pano[inst_mask,:]

    viz = cv2.resize(viz, dsize=(800, 800))
    return viz

def main():
    parser = argparse.ArgumentParser(description='Validate a detector')
    parser.add_argument('--config', required=True)
    parser.add_argument('--weights', required=True)
    parser.add_argument('--viz-dir', required=True)
    parser.add_argument('--override', nargs='+', action=DictAction)
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--draw-sem-gt', action='store_true')
    parser.add_argument('--draw-pano-gt', action='store_true')
    parser.add_argument('--surround-view-img', action='store_true')
    parser.add_argument('--surround-pano-gt', action='store_true')
    args = parser.parse_args()

    # parse configs
    cfgs = Config.fromfile(args.config)
    if args.override is not None:
        cfgs.merge_from_dict(args.override)

    cfgs = compat_cfg(cfgs)

    # set multi-process settings
    setup_multi_processes(cfgs)
    
    # import modules from plguin/xx, registry will be updated
    if hasattr(cfgs, 'plugin'):
        if cfgs.plugin:
            import importlib
            if hasattr(cfgs, 'plugin_dir'):
                plugin_dir = cfgs.plugin_dir
                _module_dir = os.path.dirname(plugin_dir)
                _module_dir = _module_dir.split('/')
                _module_path = _module_dir[0]

                for m in _module_dir[1:]:
                    _module_path = _module_path + '.' + m
                print(_module_path)
                plg_lib = importlib.import_module(_module_path)
            else:
                # import dir is the dirpath for the config file
                _module_dir = os.path.dirname(args.config)
                _module_dir = _module_dir.split('/')
                _module_path = _module_dir[0]
                for m in _module_dir[1:]:
                    _module_path = _module_path + '.' + m
                plg_lib = importlib.import_module(_module_path)

    # use val-mini for visualization
    #cfgs.data.val.ann_file = cfgs.data.val.ann_file.replace('val', 'val_mini')

    # MMCV, please shut up
    from mmcv.utils.logging import logger_initialized
    logger_initialized['root'] = logging.Logger(__name__, logging.WARNING)
    logger_initialized['mmcv'] = logging.Logger(__name__, logging.WARNING)

    # you need one GPU
    assert torch.cuda.is_available()
    # assert torch.cuda.device_count() == 1

    # logging
    logging.info('Using GPU: %s' % torch.cuda.get_device_name(0))

    # random seed
    logging.info('Setting random seed: 0')
    set_random_seed(0, deterministic=True)

    logging.info('Loading validation set from %s' % cfgs.data.val.data_root)

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfgs.dist_params)
        
    test_dataloader_default_args = dict(
        samples_per_gpu=1, workers_per_gpu=2, dist=distributed, shuffle=False)
    test_loader_cfg = {
        **test_dataloader_default_args,
        **cfgs.data.get('test_dataloader', {})
    }
    dataset = build_dataset(cfgs.data.test)
    test_loader_cfg['workers_per_gpu'] = 2
    val_loader = build_dataloader(dataset, **test_loader_cfg)
    # val_dataset = build_dataset(cfgs.data.test)
    # val_loader = build_dataloader(
    #     val_dataset,
    #     samples_per_gpu=1,
    #     workers_per_gpu=1,
    #     num_gpus=1,
    #     dist=False,
    #     shuffle=False,
    #     seed=0,
    # )

    logging.info('Creating model: %s' % cfgs.model.type)
    model = build_model(cfgs.model)
    model.cuda()
    model = MMDataParallel(model, [0])
    model.eval()

    logging.info('Loading checkpoint from %s' % args.weights)
    load_checkpoint(
        model, args.weights, map_location='cuda', strict=True,
        logger=logging.Logger(__name__, logging.ERROR)
    )

    if not os.path.exists(args.viz_dir):
        os.makedirs(args.viz_dir)
        
    for i, data in tqdm(enumerate(val_loader)):

        with torch.no_grad():
            occ_pred = model(return_loss=False, rescale=True, **data)[0]

            if False:
                occ_bev_feature = occ_pred['occ_bev_feature']
                outs = occ_pred['outs']

                tensor = occ_bev_feature.max(dim=1)[0].cpu()
                draw_fig(tensor, name=os.path.join(args.viz_dir, '%04d-occ_bev_feature.jpg' % i))
                print(os.path.join(args.viz_dir, '%04d-occ_bev_feature.jpg' % i))

                tensor = outs[0][0]['heatmap'].sigmoid().sum(dim=1)[0].cpu()
                draw_fig(tensor, name=os.path.join(args.viz_dir, '%04d-heatmap.jpg' % i))
                print(os.path.join(args.viz_dir, '%04d-heatmap.jpg' % i))

                tensor = outs[0][0]['reg'][0,0].cpu()
                tensor = outs[0][0]['reg'][0,1].cpu()
                tensor = ((outs[0][0]['reg'][0,0]**2+outs[0][0]['reg'][0,1]**2)**0.5).unsqueeze(dim=0).cpu()
                draw_fig(tensor, name=os.path.join(args.viz_dir, '%04d-reg.jpg' % i))
                print(os.path.join(args.viz_dir, '%04d-reg.jpg' % i))

                tensor = outs[0][0]['height'][0,0].cpu()
                draw_fig(tensor, name=os.path.join(args.viz_dir, '%04d-height.jpg' % i))
                print(os.path.join(args.viz_dir, '%04d-height.jpg' % i))


            sem_pred = occ_pred['pred_occ']
            cv2.imwrite(os.path.join(args.viz_dir, '%04d-sem.jpg' % i), occ2img(semantics=sem_pred.cpu())[..., ::-1])
            print(os.path.join(args.viz_dir, '%04d-sem.jpg' % i))
            
            inst_pred = occ_pred['pano_inst']
            cv2.imwrite(os.path.join(args.viz_dir, '%04d-inst.jpg' % i), occ2img(semantics=sem_pred.cpu(), is_pano=True, panoptics=inst_pred.cpu())[..., ::-1])
            print(os.path.join(args.viz_dir, '%04d-inst.jpg' % i))
            
            if args.surround_view_img:
                img = data['img_inputs'][0][0][0][::9].cpu().numpy()
                mean = np.array([123.675, 116.28, 103.53], dtype=np.float32).reshape(1,3,1,1)
                std = np.array([58.395, 57.12, 57.375], dtype=np.float32).reshape(1,3,1,1)
                img = img*std + mean
                img = img.astype(np.uint8).transpose(0,2,3,1)
                up = np.concatenate([img[0,...], img[1,...], img[2,...]], 1)
                down = np.concatenate([img[3,...], img[4,...], img[5,...]], 1)
                out = np.concatenate([up, down], 0)
                cv2.imwrite(os.path.join(args.viz_dir, '%04d-rgb.jpg' % i), out)
                print(os.path.join(args.viz_dir, '%04d-rgb.jpg' % i))

            if args.draw_sem_gt or args.draw_pano_gt:
                occ_gt = np.load(os.path.join(val_loader.dataset.data_infos[i]['occ_path'].\
                    replace('data/nuscenes/gts/', 'data/nuscenes/occ3d_panoptic/'), 'labels.npz'))
                pano_gt = occ_gt['instances']
                sem_gt = occ_gt['semantics']

            if args.draw_sem_gt:
                # sem_gt = np.array(data['voxel_semantics'][0])[0]
                cv2.imwrite(os.path.join(args.viz_dir, '%04d-sem-gt.jpg' % i), occ2img(semantics=sem_gt.cpu())[..., ::-1])

            if args.draw_pano_gt:
                cv2.imwrite(os.path.join(args.viz_dir, '%04d-pano-gt.jpg' % i), occ2img(semantics=sem_gt, is_pano=True, panoptics=pano_gt)[..., ::-1])
                print(os.path.join(args.viz_dir, '%04d-pano-gt.jpg' % i))

if __name__ == '__main__':
    main()

'''
exp_name=flashoccv2-r50-depth-tiny-pano
python tools/vis_occ.py --config projects/configs/flashoccv2/${exp_name}.py --weights work_dirs/${exp_name}/epoch_24_ema.pth --viz-dir vis/${exp_name} --draw-gt

exp_name=flashoccv2-r50-depth4d-longterm8f-pano
python tools/vis_occ.py --config projects/configs/flashoccv2/${exp_name}.py --weights work_dirs/${exp_name}/epoch_24_ema.pth --viz-dir vis/${exp_name} --draw-pano-gt #--draw-gt
'''