vis_occ.py 15 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import os

import mmcv
import open3d as o3d
import numpy as np
import torch
import pickle
import math
from typing import Tuple, List, Dict, Iterable
import argparse
import cv2

NOT_OBSERVED = -1
FREE = 0
OCCUPIED = 1
FREE_LABEL = 17
BINARY_OBSERVED = 1
BINARY_NOT_OBSERVED = 0

VOXEL_SIZE = [0.4, 0.4, 0.4]
POINT_CLOUD_RANGE = [-40, -40, -1, 40, 40, 5.4]
SPTIAL_SHAPE = [200, 200, 16]
TGT_VOXEL_SIZE = [0.4, 0.4, 0.4]
TGT_POINT_CLOUD_RANGE = [-40, -40, -1, 40, 40, 5.4]


colormap_to_colors = np.array(
    [
        [0,   0,   0, 255],  # 0 undefined
        [112, 128, 144, 255],  # 1 barrier  orange
        [220, 20, 60, 255],    # 2 bicycle  Blue
        [255, 127, 80, 255],   # 3 bus  Darkslategrey
        [255, 158, 0, 255],  # 4 car  Crimson
        [233, 150, 70, 255],   # 5 cons. Veh  Orangered
        [255, 61, 99, 255],  # 6 motorcycle  Darkorange
        [0, 0, 230, 255], # 7 pedestrian  Darksalmon
        [47, 79, 79, 255],  # 8 traffic cone  Red
        [255, 140, 0, 255],# 9 trailer  Slategrey
        [255, 99, 71, 255],# 10 truck Burlywood
        [0, 207, 191, 255],    # 11 drive sur  Green
        [175, 0, 75, 255],  # 12 other lat  nuTonomy green
        [75, 0, 75, 255],  # 13 sidewalk
        [112, 180, 60, 255],    # 14 terrain
        [222, 184, 135, 255],    # 15 manmade
        [0, 175, 0, 255],   # 16 vegeyation
], dtype=np.float32)



def voxel2points(voxel, occ_show, voxelSize):
    """
    Args:
        voxel: (Dx, Dy, Dz)
        occ_show: (Dx, Dy, Dz)
        voxelSize: (dx, dy, dz)

    Returns:
        points: (N, 3) 3: (x, y, z)
        voxel: (N, ) cls_id
        occIdx: (x_idx, y_idx, z_idx)
    """
    occIdx = torch.where(occ_show)
    points = torch.cat((occIdx[0][:, None] * voxelSize[0] + POINT_CLOUD_RANGE[0], \
                        occIdx[1][:, None] * voxelSize[1] + POINT_CLOUD_RANGE[1], \
                        occIdx[2][:, None] * voxelSize[2] + POINT_CLOUD_RANGE[2]),
                       dim=1)      # (N, 3) 3: (x, y, z)
    return points, voxel[occIdx], occIdx


def voxel_profile(voxel, voxel_size):
    """
    Args:
        voxel: (N, 3)  3:(x, y, z)
        voxel_size: (vx, vy, vz)

    Returns:
        box: (N, 7) (x, y, z - dz/2, vx, vy, vz, 0)
    """
    centers = torch.cat((voxel[:, :2], voxel[:, 2][:, None] - voxel_size[2] / 2), dim=1)     # (x, y, z - dz/2)
    # centers = voxel
    wlh = torch.cat((torch.tensor(voxel_size[0]).repeat(centers.shape[0])[:, None],
                     torch.tensor(voxel_size[1]).repeat(centers.shape[0])[:, None],
                     torch.tensor(voxel_size[2]).repeat(centers.shape[0])[:, None]), dim=1)
    yaw = torch.full_like(centers[:, 0:1], 0)
    return torch.cat((centers, wlh, yaw), dim=1)


def rotz(t):
    """Rotation about the z-axis."""
    c = torch.cos(t)
    s = torch.sin(t)
    return torch.tensor([[c, -s,  0],
                     [s,  c,  0],
                     [0,  0,  1]])


def my_compute_box_3d(center, size, heading_angle):
    """
    Args:
        center: (N, 3)  3: (x, y, z - dz/2)
        size: (N, 3)    3: (vx, vy, vz)
        heading_angle: (N, 1)
    Returns:
        corners_3d: (N, 8, 3)
    """
    h, w, l = size[:, 2], size[:, 0], size[:, 1]
    center[:, 2] = center[:, 2] + h / 2
    l, w, h = (l / 2).unsqueeze(1), (w / 2).unsqueeze(1), (h / 2).unsqueeze(1)
    x_corners = torch.cat([-l, l, l, -l, -l, l, l, -l], dim=1)[..., None]
    y_corners = torch.cat([w, w, -w, -w, w, w, -w, -w], dim=1)[..., None]
    z_corners = torch.cat([h, h, h, h, -h, -h, -h, -h], dim=1)[..., None]
    corners_3d = torch.cat([x_corners, y_corners, z_corners], dim=2)
    corners_3d[..., 0] += center[:, 0:1]
    corners_3d[..., 1] += center[:, 1:2]
    corners_3d[..., 2] += center[:, 2:3]
    return corners_3d


def show_point_cloud(points: np.ndarray, colors=True, points_colors=None, bbox3d=None, voxelize=False,
                     bbox_corners=None, linesets=None, vis=None, offset=[0,0,0], large_voxel=True, voxel_size=0.4):
    """
    :param points: (N, 3)  3:(x, y, z)
    :param colors: false 不显示点云颜色
    :param points_colors: (N, 4)
    :param bbox3d: voxel grid (N, 7) 7: (center, wlh, yaw=0)
    :param voxelize: false 不显示voxel边界
    :param bbox_corners: (N, 8, 3)  voxel grid 角点坐标, 用于绘制voxel grid 边界.
    :param linesets: 用于绘制voxel grid 边界.
    :return:
    """
    if vis is None:
        vis = o3d.visualization.VisualizerWithKeyCallback()
        vis.create_window()
    if isinstance(offset, list) or isinstance(offset, tuple):
        offset = np.array(offset)

    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(points+offset)
    if colors:
        pcd.colors = o3d.utility.Vector3dVector(points_colors[:, :3])
    mesh_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(
        size=1, origin=[0, 0, 0])

    voxelGrid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=voxel_size)
    if large_voxel:
        vis.add_geometry(voxelGrid)
    else:
        vis.add_geometry(pcd)

    if voxelize:
        line_sets = o3d.geometry.LineSet()
        line_sets.points = o3d.open3d.utility.Vector3dVector(bbox_corners.reshape((-1, 3))+offset)
        line_sets.lines = o3d.open3d.utility.Vector2iVector(linesets.reshape((-1, 2)))
        line_sets.paint_uniform_color((0, 0, 0))
        vis.add_geometry(line_sets)

    vis.add_geometry(mesh_frame)

    # ego_pcd = o3d.geometry.PointCloud()
    # ego_points = generate_the_ego_car()
    # ego_pcd.points = o3d.utility.Vector3dVector(ego_points)
    # vis.add_geometry(ego_pcd)

    return vis


def show_occ(occ_state, occ_show, voxel_size, vis=None, offset=[0, 0, 0]):
    """
    Args:
        occ_state: (Dx, Dy, Dz), cls_id
        occ_show: (Dx, Dy, Dz), bool
        voxel_size: [0.4, 0.4, 0.4]
        vis: Visualizer
        offset:

    Returns:

    """
    colors = colormap_to_colors / 255
    pcd, labels, occIdx = voxel2points(occ_state, occ_show, voxel_size)
    # pcd: (N, 3)  3: (x, y, z)
    # labels: (N, )  cls_id
    _labels = labels % len(colors)
    pcds_colors = colors[_labels]   # (N, 4)

    bboxes = voxel_profile(pcd, voxel_size)    # (N, 7)   7: (x, y, z - dz/2, dx, dy, dz, 0)
    bboxes_corners = my_compute_box_3d(bboxes[:, 0:3], bboxes[:, 3:6], bboxes[:, 6:7])      # (N, 8, 3)

    bases_ = torch.arange(0, bboxes_corners.shape[0] * 8, 8)
    edges = torch.tensor([[0, 1], [1, 2], [2, 3], [3, 0], [4, 5], [5, 6], [6, 7], [7, 4], [0, 4], [1, 5], [2, 6], [3, 7]])  # lines along y-axis
    edges = edges.reshape((1, 12, 2)).repeat(bboxes_corners.shape[0], 1, 1)     # (N, 12, 2)
    # (N, 12, 2) + (N, 1, 1) --> (N, 12, 2)   此时edges中记录的是bboxes_corners的整体id: (0, N*8).
    edges = edges + bases_[:, None, None]

    vis = show_point_cloud(
        points=pcd.numpy(),
        colors=True,
        points_colors=pcds_colors,
        voxelize=True,
        bbox3d=bboxes.numpy(),
        bbox_corners=bboxes_corners.numpy(),
        linesets=edges.numpy(),
        vis=vis,
        offset=offset,
        large_voxel=True,
        voxel_size=0.4
    )
    return vis


def generate_the_ego_car():
    ego_range = [-2, -1, 0, 2, 1, 1.5]
    ego_voxel_size=[0.1, 0.1, 0.1]
    ego_xdim = int((ego_range[3] - ego_range[0]) / ego_voxel_size[0])
    ego_ydim = int((ego_range[4] - ego_range[1]) / ego_voxel_size[1])
    ego_zdim = int((ego_range[5] - ego_range[2]) / ego_voxel_size[2])
    temp_x = np.arange(ego_xdim)
    temp_y = np.arange(ego_ydim)
    temp_z = np.arange(ego_zdim)
    ego_xyz = np.stack(np.meshgrid(temp_y, temp_x, temp_z), axis=-1).reshape(-1, 3)
    ego_point_x = (ego_xyz[:, 0:1] + 0.5) / ego_xdim * (ego_range[3] - ego_range[0]) + ego_range[0]
    ego_point_y = (ego_xyz[:, 1:2] + 0.5) / ego_ydim * (ego_range[4] - ego_range[1]) + ego_range[1]
    ego_point_z = (ego_xyz[:, 2:3] + 0.5) / ego_zdim * (ego_range[5] - ego_range[2]) + ego_range[2]
    ego_point_xyz = np.concatenate((ego_point_y, ego_point_x, ego_point_z), axis=-1)
    ego_points_label =  (np.ones((ego_point_xyz.shape[0]))*16).astype(np.uint8)
    ego_dict = {}
    ego_dict['point'] = ego_point_xyz
    ego_dict['label'] = ego_points_label
    return ego_point_xyz


def parse_args():
    parser = argparse.ArgumentParser(description='Visualize the predicted '
                                     'result of nuScenes')
    parser.add_argument(
        'res', help='Path to the predicted result')
    parser.add_argument(
        '--canva-size', type=int, default=1000, help='Size of canva in pixel')
    parser.add_argument(
        '--vis-frames',
        type=int,
        default=500,
        help='Number of frames for visualization')
    parser.add_argument(
        '--scale-factor',
        type=int,
        default=4,
        help='Trade-off between image-view and bev in size of '
        'the visualized canvas')
    parser.add_argument(
        '--version',
        type=str,
        default='val',
        help='Version of nuScenes dataset')
    parser.add_argument('--draw-gt', action='store_true')
    parser.add_argument(
        '--root_path',
        type=str,
        default='./data/nuscenes',
        help='Path to nuScenes dataset')
    parser.add_argument(
        '--save_path',
        type=str,
        default='./vis',
        help='Path to save visualization results')
    parser.add_argument(
        '--format',
        type=str,
        default='image',
        choices=['video', 'image'],
        help='The desired format of the visualization result')
    parser.add_argument(
        '--fps', type=int, default=10, help='Frame rate of video')
    parser.add_argument(
        '--video-prefix', type=str, default='vis', help='name of video')
    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    # load predicted results
    results_dir = args.res

    # load dataset information
    info_path = \
        args.root_path + '/bevdetv2-nuscenes_infos_%s.pkl' % args.version
    dataset = pickle.load(open(info_path, 'rb'))
    # prepare save path and medium
    vis_dir = args.save_path
    if not os.path.exists(vis_dir):
        os.makedirs(vis_dir)
    print('saving visualized result to %s' % vis_dir)
    scale_factor = args.scale_factor
    canva_size = args.canva_size
    if args.format == 'video':
        fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
        vout = cv2.VideoWriter(
            os.path.join(vis_dir, '%s.mp4' % args.video_prefix), fourcc,
            args.fps, (int(1600 / scale_factor * 3),
                       int(900 / scale_factor * 2 + canva_size)))

    views = [
        'CAM_FRONT_LEFT', 'CAM_FRONT', 'CAM_FRONT_RIGHT', 'CAM_BACK_LEFT',
        'CAM_BACK', 'CAM_BACK_RIGHT'
    ]
    print('start visualizing results')

    vis = o3d.visualization.VisualizerWithKeyCallback()
    vis.create_window()

    for cnt, info in enumerate(
            dataset['infos'][:min(args.vis_frames, len(dataset['infos']))]):
        if cnt % 10 == 0:
            print('%d/%d' % (cnt, min(args.vis_frames, len(dataset['infos']))))

        scene_name = info['scene_name']
        sample_token = info['token']

        pred_occ_path = os.path.join(results_dir, scene_name, sample_token, 'pred.npz')
        gt_occ_path = info['occ_path']

        pred_occ = np.load(pred_occ_path)['pred']
        gt_data = np.load(os.path.join(args.root_path, gt_occ_path, 'labels.npz'))
        voxel_label = gt_data['semantics']
        lidar_mask = gt_data['mask_lidar']
        camera_mask = gt_data['mask_camera']

        # load imgs
        imgs = []
        for view in views:
            img = cv2.imread(info['cams'][view]['data_path'])
            imgs.append(img)

        # occ_canvas
        voxel_show = np.logical_and(pred_occ != FREE_LABEL, camera_mask)
        # voxel_show = pred_occ != FREE_LABEL
        voxel_size = VOXEL_SIZE
        vis = show_occ(torch.from_numpy(pred_occ), torch.from_numpy(voxel_show), voxel_size=voxel_size, vis=vis,
                       offset=[0, pred_occ.shape[0] * voxel_size[0] * 1.2 * 0, 0])

        if args.draw_gt:
            voxel_show = np.logical_and(voxel_label != FREE_LABEL, camera_mask)
            vis = show_occ(torch.from_numpy(voxel_label), torch.from_numpy(voxel_show), voxel_size=voxel_size, vis=vis,
                           offset=[0, voxel_label.shape[0] * voxel_size[0] * 1.2 * 1, 0])

        view_control = vis.get_view_control()

        look_at = np.array([-0.185, 0.513, 3.485])
        front = np.array([-0.974, -0.055, 0.221])
        up = np.array([0.221, 0.014, 0.975])
        zoom = np.array([0.08])

        view_control.set_lookat(look_at)
        view_control.set_front(front)
        view_control.set_up(up)
        view_control.set_zoom(zoom)

        opt = vis.get_render_option()
        opt.background_color = np.asarray([1, 1, 1])
        opt.line_width = 5

        vis.poll_events()
        vis.update_renderer()
        vis.run()

        # if args.format == 'image':
        #     out_dir = os.path.join(vis_dir, f'{scene_name}', f'{sample_token}')
        #     mmcv.mkdir_or_exist(out_dir)
        #     vis.capture_screen_image(os.path.join(out_dir, 'screen_occ.png'), do_render=True)

        occ_canvas = vis.capture_screen_float_buffer(do_render=True)
        occ_canvas = np.asarray(occ_canvas)
        occ_canvas = (occ_canvas * 255).astype(np.uint8)
        occ_canvas = occ_canvas[..., [2, 1, 0]]
        occ_canvas_resize = cv2.resize(occ_canvas, (canva_size, canva_size), interpolation=cv2.INTER_CUBIC)

        vis.clear_geometries()

        big_img = np.zeros((900 * 2 + canva_size * scale_factor, 1600 * 3, 3),
                       dtype=np.uint8)
        big_img[:900, :, :] = np.concatenate(imgs[:3], axis=1)
        img_back = np.concatenate(
            [imgs[3][:, ::-1, :], imgs[4][:, ::-1, :], imgs[5][:, ::-1, :]],
            axis=1)
        big_img[900 + canva_size * scale_factor:, :, :] = img_back
        big_img = cv2.resize(big_img, (int(1600 / scale_factor * 3),
                                       int(900 / scale_factor * 2 + canva_size)))
        w_begin = int((1600 * 3 / scale_factor - canva_size) // 2)
        big_img[int(900 / scale_factor):int(900 / scale_factor) + canva_size,
                w_begin:w_begin + canva_size, :] = occ_canvas_resize

        if args.format == 'image':
            out_dir = os.path.join(vis_dir, f'{scene_name}', f'{sample_token}')
            mmcv.mkdir_or_exist(out_dir)
            for i, img in enumerate(imgs):
                cv2.imwrite(os.path.join(out_dir, f'img{i}.png'), img)
            cv2.imwrite(os.path.join(out_dir, 'occ.png'), occ_canvas)
            cv2.imwrite(os.path.join(out_dir, 'overall.png'), big_img)
        elif args.format == 'video':
            cv2.putText(big_img, f'{cnt:{cnt}}', (5, 15), fontFace=cv2.FONT_HERSHEY_COMPLEX, color=(0, 0, 0),
                        fontScale=0.5)
            cv2.putText(big_img, f'{scene_name}', (5, 35), fontFace=cv2.FONT_HERSHEY_COMPLEX, color=(0, 0, 0),
                        fontScale=0.5)
            cv2.putText(big_img, f'{sample_token[:5]}', (5, 55), fontFace=cv2.FONT_HERSHEY_COMPLEX, color=(0, 0, 0),
                        fontScale=0.5)
            vout.write(big_img)

    if args.format == 'video':
        vout.release()
    vis.destroy_window()


if __name__ == '__main__':
    main()