vis.py 12 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright (c) Phigent Robotics. All rights reserved.
import argparse
import json
import os
import pickle

import cv2
import numpy as np
from pyquaternion.quaternion import Quaternion

from mmdet3d.core.bbox.structures.lidar_box3d import LiDARInstance3DBoxes as LB


def check_point_in_img(points, height, width):
    valid = np.logical_and(points[:, 0] >= 0, points[:, 1] >= 0)
    valid = np.logical_and(
        valid, np.logical_and(points[:, 0] < width, points[:, 1] < height))
    return valid


def depth2color(depth):
    gray = max(0, min((depth + 2.5) / 3.0, 1.0))
    max_lumi = 200
    colors = np.array(
        [[max_lumi, 0, max_lumi], [max_lumi, 0, 0], [max_lumi, max_lumi, 0],
         [0, max_lumi, 0], [0, max_lumi, max_lumi], [0, 0, max_lumi]],
        dtype=np.float32)
    if gray == 1:
        return tuple(colors[-1].tolist())
    num_rank = len(colors) - 1
    rank = np.floor(gray * num_rank).astype(np.int)
    diff = (gray - rank / num_rank) * num_rank
    return tuple(
        (colors[rank] + (colors[rank + 1] - colors[rank]) * diff).tolist())


def lidar2img(points_lidar, camrera_info):
    points_lidar_homogeneous = \
        np.concatenate([points_lidar,
                        np.ones((points_lidar.shape[0], 1),
                                dtype=points_lidar.dtype)], axis=1)
    camera2lidar = np.eye(4, dtype=np.float32)
    camera2lidar[:3, :3] = camrera_info['sensor2lidar_rotation']
    camera2lidar[:3, 3] = camrera_info['sensor2lidar_translation']
    lidar2camera = np.linalg.inv(camera2lidar)
    points_camera_homogeneous = points_lidar_homogeneous @ lidar2camera.T
    points_camera = points_camera_homogeneous[:, :3]
    valid = np.ones((points_camera.shape[0]), dtype=bool)
    valid = np.logical_and(points_camera[:, -1] > 0.5, valid)
    points_camera = points_camera / points_camera[:, 2:3]
    camera2img = camrera_info['cam_intrinsic']
    points_img = points_camera @ camera2img.T
    points_img = points_img[:, :2]
    return points_img, valid


def get_lidar2global(infos):
    lidar2ego = np.eye(4, dtype=np.float32)
    lidar2ego[:3, :3] = Quaternion(infos['lidar2ego_rotation']).rotation_matrix
    lidar2ego[:3, 3] = infos['lidar2ego_translation']
    ego2global = np.eye(4, dtype=np.float32)
    ego2global[:3, :3] = Quaternion(
        infos['ego2global_rotation']).rotation_matrix
    ego2global[:3, 3] = infos['ego2global_translation']
    return ego2global @ lidar2ego


def parse_args():
    parser = argparse.ArgumentParser(description='Visualize the predicted '
                                     'result of nuScenes')
    parser.add_argument(
        'res', help='Path to the predicted result in json format')
    parser.add_argument(
        '--show-range',
        type=int,
        default=50,
        help='Range of visualization in BEV')
    parser.add_argument(
        '--canva-size', type=int, default=1000, help='Size of canva in pixel')
    parser.add_argument(
        '--vis-frames',
        type=int,
        default=500,
        help='Number of frames for visualization')
    parser.add_argument(
        '--scale-factor',
        type=int,
        default=4,
        help='Trade-off between image-view and bev in size of '
        'the visualized canvas')
    parser.add_argument(
        '--vis-thred',
        type=float,
        default=0.3,
        help='Threshold the predicted results')
    parser.add_argument('--draw-gt', action='store_true')
    parser.add_argument(
        '--version',
        type=str,
        default='val',
        help='Version of nuScenes dataset')
    parser.add_argument(
        '--root_path',
        type=str,
        default='./data/nuscenes',
        help='Path to nuScenes dataset')
    parser.add_argument(
        '--save_path',
        type=str,
        default='./vis',
        help='Path to save visualization results')
    parser.add_argument(
        '--format',
        type=str,
        default='video',
        choices=['video', 'image'],
        help='The desired format of the visualization result')
    parser.add_argument(
        '--fps', type=int, default=20, help='Frame rate of video')
    parser.add_argument(
        '--video-prefix', type=str, default='vis', help='name of video')
    args = parser.parse_args()
    return args


color_map = {0: (255, 255, 0), 1: (0, 255, 255)}


def main():
    args = parse_args()
    # load predicted results
    res = json.load(open(args.res, 'r'))
    # load dataset information
    info_path = \
        args.root_path + '/bevdetv2-nuscenes_infos_%s.pkl' % args.version
    dataset = pickle.load(open(info_path, 'rb'))
    # prepare save path and medium
    vis_dir = args.save_path
    if not os.path.exists(vis_dir):
        os.makedirs(vis_dir)
    print('saving visualized result to %s' % vis_dir)
    scale_factor = args.scale_factor
    canva_size = args.canva_size
    show_range = args.show_range
    if args.format == 'video':
        fourcc = cv2.VideoWriter_fourcc(*'MP4V')
        vout = cv2.VideoWriter(
            os.path.join(vis_dir, '%s.mp4' % args.video_prefix), fourcc,
            args.fps, (int(1600 / scale_factor * 3),
                       int(900 / scale_factor * 2 + canva_size)))

    draw_boxes_indexes_bev = [(0, 1), (1, 2), (2, 3), (3, 0)]
    draw_boxes_indexes_img_view = [(0, 1), (1, 2), (2, 3), (3, 0), (4, 5),
                                   (5, 6), (6, 7), (7, 4), (0, 4), (1, 5),
                                   (2, 6), (3, 7)]
    views = [
        'CAM_FRONT_LEFT', 'CAM_FRONT', 'CAM_FRONT_RIGHT', 'CAM_BACK_LEFT',
        'CAM_BACK', 'CAM_BACK_RIGHT'
    ]
    print('start visualizing results')
    for cnt, infos in enumerate(
            dataset['infos'][:min(args.vis_frames, len(dataset['infos']))]):
        if cnt % 10 == 0:
            print('%d/%d' % (cnt, min(args.vis_frames, len(dataset['infos']))))
        # collect instances
        pred_res = res['results'][infos['token']]
        pred_boxes = [
            pred_res[rid]['translation'] + pred_res[rid]['size'] + [
                Quaternion(pred_res[rid]['rotation']).yaw_pitch_roll[0] +
                np.pi / 2
            ] for rid in range(len(pred_res))
        ]
        if len(pred_boxes) == 0:
            corners_lidar = np.zeros((0, 3), dtype=np.float32)
        else:
            pred_boxes = np.array(pred_boxes, dtype=np.float32)
            boxes = LB(pred_boxes, origin=(0.5, 0.5, 0.0))
            corners_global = boxes.corners.numpy().reshape(-1, 3)
            corners_global = np.concatenate(
                [corners_global,
                 np.ones([corners_global.shape[0], 1])],
                axis=1)
            l2g = get_lidar2global(infos)
            corners_lidar = corners_global @ np.linalg.inv(l2g).T
            corners_lidar = corners_lidar[:, :3]
        pred_flag = np.ones((corners_lidar.shape[0] // 8, ), dtype=np.bool)
        scores = [
            pred_res[rid]['detection_score'] for rid in range(len(pred_res))
        ]
        if args.draw_gt:
            gt_boxes = infos['gt_boxes']
            gt_boxes[:, -1] = gt_boxes[:, -1] + np.pi / 2
            width = gt_boxes[:, 4].copy()
            gt_boxes[:, 4] = gt_boxes[:, 3]
            gt_boxes[:, 3] = width
            corners_lidar_gt = \
                LB(infos['gt_boxes'],
                   origin=(0.5, 0.5, 0.5)).corners.numpy().reshape(-1, 3)
            corners_lidar = np.concatenate([corners_lidar, corners_lidar_gt],
                                           axis=0)
            gt_flag = np.ones((corners_lidar_gt.shape[0] // 8), dtype=np.bool)
            pred_flag = np.concatenate(
                [pred_flag, np.logical_not(gt_flag)], axis=0)
            scores = scores + [0 for _ in range(infos['gt_boxes'].shape[0])]
        scores = np.array(scores, dtype=np.float32)
        sort_ids = np.argsort(scores)

        # image view
        imgs = []
        for view in views:
            img = cv2.imread(infos['cams'][view]['data_path'])
            # draw instances
            corners_img, valid = lidar2img(corners_lidar, infos['cams'][view])
            valid = np.logical_and(
                valid,
                check_point_in_img(corners_img, img.shape[0], img.shape[1]))
            valid = valid.reshape(-1, 8)
            corners_img = corners_img.reshape(-1, 8, 2).astype(np.int)
            for aid in range(valid.shape[0]):
                for index in draw_boxes_indexes_img_view:
                    if valid[aid, index[0]] and valid[aid, index[1]]:
                        cv2.line(
                            img,
                            tuple(corners_img[aid, index[0]]),
                            tuple(corners_img[aid, index[1]]),
                            color=color_map[int(pred_flag[aid])],
                            thickness=scale_factor)
            imgs.append(img)

        # bird-eye-view
        canvas = np.zeros((int(canva_size), int(canva_size), 3),
                          dtype=np.uint8)
        # draw lidar points
        lidar_points = np.fromfile(infos['lidar_path'], dtype=np.float32)
        lidar_points = lidar_points.reshape(-1, 5)[:, :3]
        lidar_points[:, 1] = -lidar_points[:, 1]
        lidar_points[:, :2] = \
            (lidar_points[:, :2] + show_range) / show_range / 2.0 * canva_size
        for p in lidar_points:
            if check_point_in_img(
                    p.reshape(1, 3), canvas.shape[1], canvas.shape[0])[0]:
                color = depth2color(p[2])
                cv2.circle(
                    canvas, (int(p[0]), int(p[1])),
                    radius=0,
                    color=color,
                    thickness=1)

        # draw instances
        corners_lidar = corners_lidar.reshape(-1, 8, 3)
        corners_lidar[:, :, 1] = -corners_lidar[:, :, 1]
        bottom_corners_bev = corners_lidar[:, [0, 3, 7, 4], :2]
        bottom_corners_bev = \
            (bottom_corners_bev + show_range) / show_range / 2.0 * canva_size
        bottom_corners_bev = np.round(bottom_corners_bev).astype(np.int32)
        center_bev = corners_lidar[:, [0, 3, 7, 4], :2].mean(axis=1)
        head_bev = corners_lidar[:, [0, 4], :2].mean(axis=1)
        canter_canvas = \
            (center_bev + show_range) / show_range / 2.0 * canva_size
        center_canvas = canter_canvas.astype(np.int32)
        head_canvas = (head_bev + show_range) / show_range / 2.0 * canva_size
        head_canvas = head_canvas.astype(np.int32)

        for rid in sort_ids:
            score = scores[rid]
            if score < args.vis_thred and pred_flag[rid]:
                continue
            score = min(score * 2.0, 1.0) if pred_flag[rid] else 1.0
            color = color_map[int(pred_flag[rid])]
            for index in draw_boxes_indexes_bev:
                cv2.line(
                    canvas,
                    bottom_corners_bev[rid, index[0]],
                    bottom_corners_bev[rid, index[1]],
                    [color[0] * score, color[1] * score, color[2] * score],
                    thickness=1)
            cv2.line(
                canvas,
                center_canvas[rid],
                head_canvas[rid],
                [color[0] * score, color[1] * score, color[2] * score],
                1,
                lineType=8)

        # fuse image-view and bev
        img = np.zeros((900 * 2 + canva_size * scale_factor, 1600 * 3, 3),
                       dtype=np.uint8)
        img[:900, :, :] = np.concatenate(imgs[:3], axis=1)
        img_back = np.concatenate(
            [imgs[3][:, ::-1, :], imgs[4][:, ::-1, :], imgs[5][:, ::-1, :]],
            axis=1)
        img[900 + canva_size * scale_factor:, :, :] = img_back
        img = cv2.resize(img, (int(1600 / scale_factor * 3),
                               int(900 / scale_factor * 2 + canva_size)))
        w_begin = int((1600 * 3 / scale_factor - canva_size) // 2)
        img[int(900 / scale_factor):int(900 / scale_factor) + canva_size,
            w_begin:w_begin + canva_size, :] = canvas

        if args.format == 'image':
            cv2.imwrite(os.path.join(vis_dir, '%s.jpg' % infos['token']), img)
        elif args.format == 'video':
            vout.write(img)
    if args.format == 'video':
        vout.release()


if __name__ == '__main__':
    main()