view_transformer.py 27.2 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.distributed as dist
from mmcv.runner import BaseModule, force_fp32
from mmdet3d.models.builder import NECKS
from ...ops import bev_pool_v2
from ..model_utils import DepthNet
from torch.cuda.amp.autocast_mode import autocast
import torch.nn.functional as F


@NECKS.register_module(force=True)
class LSSViewTransformer(BaseModule):
    r"""Lift-Splat-Shoot view transformer with BEVPoolv2 implementation.

    Please refer to the `paper <https://arxiv.org/abs/2008.05711>`_ and
        `paper <https://arxiv.org/abs/2211.17111>`

    Args:
        grid_config (dict): Config of grid alone each axis in format of
            (lower_bound, upper_bound, interval). axis in {x,y,z,depth}.
        input_size (tuple(int)): Size of input images in format of (height,
            width).
        downsample (int): Down sample factor from the input size to the feature
            size.
        in_channels (int): Channels of input feature.
        out_channels (int): Channels of transformed feature.
        accelerate (bool): Whether the view transformation is conducted with
            acceleration. Note: the intrinsic and extrinsic of cameras should
            be constant when 'accelerate' is set true.
        sid (bool): Whether to use Spacing Increasing Discretization (SID)
            depth distribution as `STS: Surround-view Temporal Stereo for
            Multi-view 3D Detection`.
        collapse_z (bool): Whether to collapse in z direction.
    """

    def __init__(
        self,
        grid_config,
        input_size,
        downsample=16,
        in_channels=512,
        out_channels=64,
        accelerate=False,
        sid=False,
        collapse_z=True,
    ):
        super(LSSViewTransformer, self).__init__()
        self.grid_config = grid_config
        self.downsample = downsample
        self.create_grid_infos(**grid_config)
        self.sid = sid
        self.frustum = self.create_frustum(grid_config['depth'],
                                           input_size, downsample)      # (D, fH, fW, 3)  3:(u, v, d)
        self.out_channels = out_channels
        self.in_channels = in_channels
        self.depth_net = nn.Conv2d(
            in_channels, self.D + self.out_channels, kernel_size=1, padding=0)
        self.accelerate = accelerate
        self.initial_flag = True
        self.collapse_z = collapse_z

    def create_grid_infos(self, x, y, z, **kwargs):
        """Generate the grid information including the lower bound, interval,
        and size.

        Args:
            x (tuple(float)): Config of grid alone x axis in format of
                (lower_bound, upper_bound, interval).
            y (tuple(float)): Config of grid alone y axis in format of
                (lower_bound, upper_bound, interval).
            z (tuple(float)): Config of grid alone z axis in format of
                (lower_bound, upper_bound, interval).
            **kwargs: Container for other potential parameters
        """
        self.grid_lower_bound = torch.Tensor([cfg[0] for cfg in [x, y, z]])     # (min_x, min_y, min_z)
        self.grid_interval = torch.Tensor([cfg[2] for cfg in [x, y, z]])        # (dx, dy, dz)
        self.grid_size = torch.Tensor([(cfg[1] - cfg[0]) / cfg[2]
                                       for cfg in [x, y, z]])                   # (Dx, Dy, Dz)

    def create_frustum(self, depth_cfg, input_size, downsample):
        """Generate the frustum template for each image.

        Args:
            depth_cfg (tuple(float)): Config of grid alone depth axis in format
                of (lower_bound, upper_bound, interval).
            input_size (tuple(int)): Size of input images in format of (height,
                width).
            downsample (int): Down sample scale factor from the input size to
                the feature size.
        Returns:
            frustum: (D, fH, fW, 3)  3:(u, v, d)
        """
        H_in, W_in = input_size
        H_feat, W_feat = H_in // downsample, W_in // downsample
        d = torch.arange(*depth_cfg, dtype=torch.float)\
            .view(-1, 1, 1).expand(-1, H_feat, W_feat)      # (D, fH, fW)
        self.D = d.shape[0]
        if self.sid:
            d_sid = torch.arange(self.D).float()
            depth_cfg_t = torch.tensor(depth_cfg).float()
            d_sid = torch.exp(torch.log(depth_cfg_t[0]) + d_sid / (self.D-1) *
                              torch.log((depth_cfg_t[1]-1) / depth_cfg_t[0]))
            d = d_sid.view(-1, 1, 1).expand(-1, H_feat, W_feat)

        x = torch.linspace(0, W_in - 1, W_feat,  dtype=torch.float)\
            .view(1, 1, W_feat).expand(self.D, H_feat, W_feat)      # (D, fH, fW)
        y = torch.linspace(0, H_in - 1, H_feat,  dtype=torch.float)\
            .view(1, H_feat, 1).expand(self.D, H_feat, W_feat)      # (D, fH, fW)

        o = torch.stack((x, y, d), -1)    # (D, fH, fW, 3)  3:(u, v, d)
        if dist.is_initialized():
            return o.to(f"cuda:{dist.get_rank()}", non_blocking=True)
        else:
            return o

    def get_lidar_coor(self, sensor2ego, ego2global, cam2imgs, post_rots, post_trans,
                       bda):
        """Calculate the locations of the frustum points in the lidar
        coordinate system.

        Args:
            rots (torch.Tensor): Rotation from camera coordinate system to
                lidar coordinate system in shape (B, N_cams, 3, 3).
            trans (torch.Tensor): Translation from camera coordinate system to
                lidar coordinate system in shape (B, N_cams, 3).
            cam2imgs (torch.Tensor): Camera intrinsic matrixes in shape
                (B, N_cams, 3, 3).
            post_rots (torch.Tensor): Rotation in camera coordinate system in
                shape (B, N_cams, 3, 3). It is derived from the image view
                augmentation.
            post_trans (torch.Tensor): Translation in camera coordinate system
                derived from image view augmentation in shape (B, N_cams, 3).

        Returns:
            torch.tensor: Point coordinates in shape
                (B, N_cams, D, ownsample, 3)
        """
        B, N, _, _ = sensor2ego.shape

        # post-transformation
        # B x N x D x H x W x 3
        #points = self.frustum.to(sensor2ego) - post_trans.view(B, N, 1, 1, 1, 3)
        points = self.frustum - post_trans.view(B, N, 1, 1, 1, 3)


        points = torch.inverse(post_rots).view(B, N, 1, 1, 1, 3, 3)\
            .matmul(points.unsqueeze(-1))

        # cam_to_ego
        points = torch.cat(
            (points[..., :2, :] * points[..., 2:3, :], points[..., 2:3, :]), 5)
        combine = sensor2ego[:,:,:3,:3].matmul(torch.inverse(cam2imgs))
        points = combine.view(B, N, 1, 1, 1, 3, 3).matmul(points).squeeze(-1)
        points += sensor2ego[:,:,:3, 3].view(B, N, 1, 1, 1, 3)
        points = bda.view(B, 1, 1, 1, 1, 3,
                          3).matmul(points.unsqueeze(-1)).squeeze(-1)
        return points

    #@torch.compile
    def get_ego_coor(self, sensor2ego, ego2global, cam2imgs, post_rots, post_trans,
                     bda):
        """Calculate the locations of the frustum points in the lidar
        coordinate system.

        Args:
            sensor2ego (torch.Tensor): Transformation from camera coordinate system to
                ego coordinate system in shape (B, N_cams, 4, 4).
            ego2global (torch.Tensor): Translation from ego coordinate system to
                global coordinate system in shape (B, N_cams, 4, 4).
            cam2imgs (torch.Tensor): Camera intrinsic matrixes in shape
                (B, N_cams, 3, 3).
            post_rots (torch.Tensor): Rotation in camera coordinate system in
                shape (B, N_cams, 3, 3). It is derived from the image view
                augmentation.
            post_trans (torch.Tensor): Translation in camera coordinate system
                derived from image view augmentation in shape (B, N_cams, 3).
            bda (torch.Tensor): Transformation in bev. (B, 3, 3)

        Returns:
            torch.tensor: Point coordinates in shape (B, N, D, fH, fW, 3)
        """
        B, N, _, _ = sensor2ego.shape

        # post-transformation
        # (D, fH, fW, 3) - (B, N, 1, 1, 1, 3) --> (B, N, D, fH, fW, 3)
        #points = self.frustum.to(sensor2ego) - post_trans.view(B, N, 1, 1, 1, 3)
        points = self.frustum - post_trans.view(B, N, 1, 1, 1, 3)
        # (B, N, 1, 1, 1, 3, 3) @ (B, N, D, fH, fW, 3, 1)  --> (B, N, D, fH, fW, 3, 1)
        points = torch.inverse(post_rots).view(B, N, 1, 1, 1, 3, 3)\
            .matmul(points.unsqueeze(-1))

        # cam_to_ego
        # (B, N_, D, fH, fW, 3, 1)  3: (du, dv, d)
        points = torch.cat(
            (points[..., :2, :] * points[..., 2:3, :], points[..., 2:3, :]), 5)
        # R_{c->e} @ K^-1
        combine = sensor2ego[:, :, :3, :3].matmul(torch.inverse(cam2imgs))
        # (B, N, 1, 1, 1, 3, 3) @ (B, N, D, fH, fW, 3, 1)  --> (B, N, D, fH, fW, 3, 1)
        # --> (B, N, D, fH, fW, 3)
        points = combine.view(B, N, 1, 1, 1, 3, 3).matmul(points).squeeze(-1)
        # (B, N, D, fH, fW, 3) + (B, N, 1, 1, 1, 3) --> (B, N, D, fH, fW, 3)
        points += sensor2ego[:, :, :3, 3].view(B, N, 1, 1, 1, 3)

        # (B, 1, 1, 1, 3, 3) @ (B, N, D, fH, fW, 3, 1) --> (B, N, D, fH, fW, 3, 1)
        # --> (B, N, D, fH, fW, 3)
        points = bda.view(B, 1, 1, 1, 1, 3,
                          3).matmul(points.unsqueeze(-1)).squeeze(-1)
        return points

    def init_acceleration_v2(self, coor):
        """Pre-compute the necessary information in acceleration including the
        index of points in the final feature.

        Args:
            coor (torch.tensor): Coordinate of points in lidar space in shape
                (B, N, D, H, W, 3).
            x (torch.tensor): Feature of points in shape
                (B, N_cams, D, H, W, C).
        """

        ranks_bev, ranks_depth, ranks_feat, \
            interval_starts, interval_lengths = \
            self.voxel_pooling_prepare_v2(coor)
        # ranks_bev: (N_points, ),
        # ranks_depth: (N_points, ),
        # ranks_feat: (N_points, ),
        # interval_starts: (N_pillar, )
        # interval_lengths: (N_pillar, )

        self.ranks_bev = ranks_bev.int().contiguous()
        self.ranks_feat = ranks_feat.int().contiguous()
        self.ranks_depth = ranks_depth.int().contiguous()
        self.interval_starts = interval_starts.int().contiguous()
        self.interval_lengths = interval_lengths.int().contiguous()

    def voxel_pooling_v2(self, coor, depth, feat):
        """
        Args:
            coor: (B, N, D, fH, fW, 3)
            depth: (B, N, D, fH, fW)
            feat: (B, N, C, fH, fW)
        Returns:
            bev_feat: (B, C*Dz(=1), Dy, Dx)
        """
        ranks_bev, ranks_depth, ranks_feat, \
            interval_starts, interval_lengths = \
            self.voxel_pooling_prepare_v2(coor)
        # ranks_bev: (N_points, ),
        # ranks_depth: (N_points, ),
        # ranks_feat: (N_points, ),
        # interval_starts: (N_pillar, )
        # interval_lengths: (N_pillar, )
        if ranks_feat is None:
            print('warning ---> no points within the predefined '
                  'bev receptive field')
            dummy = torch.zeros(size=[
                feat.shape[0], feat.shape[2],
                int(self.grid_size[2]),
                int(self.grid_size[1]),
                int(self.grid_size[0])
            ]).to(feat)     # (B, C, Dz, Dy, Dx)
            dummy = torch.cat(dummy.unbind(dim=2), 1)   # (B, C*Dz, Dy, Dx)
            return dummy

        feat = feat.permute(0, 1, 3, 4, 2)      # (B, N, fH, fW, C)
        bev_feat_shape = (depth.shape[0], int(self.grid_size[2]),
                          int(self.grid_size[1]), int(self.grid_size[0]),
                          feat.shape[-1])       # (B, Dz, Dy, Dx, C)
        bev_feat = bev_pool_v2(depth, feat, ranks_depth, ranks_feat, ranks_bev,
                               bev_feat_shape, interval_starts,
                               interval_lengths)    # (B, C, Dz, Dy, Dx)
        # collapse Z
        if self.collapse_z:
            bev_feat = torch.cat(bev_feat.unbind(dim=2), 1)     # (B, C*Dz, Dy, Dx)
        return bev_feat

    #@torch.compile(options={"triton.cudagraphs":True})
    def voxel_pooling_prepare_v2(self, coor):
        """Data preparation for voxel pooling.
        Args:
            coor (torch.tensor): Coordinate of points in the lidar space in
                shape (B, N, D, H, W, 3).
        Returns:
            tuple[torch.tensor]:
                ranks_bev: Rank of the voxel that a point is belong to in shape (N_points, ),
                    rank介于(0, B*Dx*Dy*Dz-1).
                ranks_depth: Reserved index of points in the depth space in shape (N_Points),
                    rank介于(0, B*N*D*fH*fW-1).
                ranks_feat: Reserved index of points in the feature space in shape (N_Points),
                    rank介于(0, B*N*fH*fW-1).
                interval_starts: (N_pillar, )
                interval_lengths: (N_pillar, )
        """
        #with torch.cuda.device(coor.device):
            #zero_t = torch.scalar_tensor(0).to(coor.device)
        if dist.is_initialized():
            dv = f"cuda:{dist.get_rank()}"
        else:
            return f"cuda"
        assert dv == str(coor.device)

        with torch.cuda.device(dv):
            B, N, D, H, W, _ = coor.shape
            num_points = B * N * D * H * W
            # record the index of selected points for acceleration purpose
            ranks_depth = torch.range(
                0, num_points - 1, dtype=torch.int, device=coor.device)    # (B*N*D*H*W, ), [0, 1, ..., B*N*D*fH*fW-1]
            ranks_feat = torch.range(
                0, num_points // D - 1, dtype=torch.int, device=coor.device)   # [0, 1, ...,B*N*fH*fW-1]
            ranks_feat = ranks_feat.reshape(B, N, 1, H, W)
            ranks_feat = ranks_feat.expand(B, N, D, H, W).flatten()     # (B*N*D*fH*fW, )

            # convert coordinate into the voxel space
            # ((B, N, D, fH, fW, 3) - (3, )) / (3, ) --> (B, N, D, fH, fW, 3)   3:(x, y, z)  grid coords.
            coor = ((coor - self.grid_lower_bound.to(coor)) /
                    self.grid_interval.to(coor))
            coor = coor.long().view(num_points, 3)      # (B, N, D, fH, fW, 3) --> (B*N*D*fH*fW, 3)
            # (B, N*D*fH*fW) --> (B*N*D*fH*fW, 1)
            batch_idx = torch.range(0, B - 1).reshape(B, 1). \
                expand(B, num_points // B).reshape(num_points, 1).to(coor)
            coor = torch.cat((coor, batch_idx), 1)      # (B*N*D*fH*fW, 4)   4: (x, y, z, batch_id)

            # filter out points that are outside box
            kept = (coor[:, 0] >= 0) & (coor[:, 0] < self.grid_size[0]) & \
                   (coor[:, 1] >= 0) & (coor[:, 1] < self.grid_size[1]) & \
                   (coor[:, 2] >= 0) & (coor[:, 2] < self.grid_size[2])
            if len(kept) == 0:
                return None, None, None, None, None

            # (N_points, 4), (N_points, ), (N_points, )
            coor, ranks_depth, ranks_feat = \
                coor[kept], ranks_depth[kept], ranks_feat[kept]

            # get tensors from the same voxel next to each other
            ranks_bev = coor[:, 3] * (
                self.grid_size[2] * self.grid_size[1] * self.grid_size[0])
            ranks_bev += coor[:, 2] * (self.grid_size[1] * self.grid_size[0])
            ranks_bev += coor[:, 1] * self.grid_size[0] + coor[:, 0]
            order = ranks_bev.argsort()
            # (N_points, ), (N_points, ), (N_points, )
            ranks_bev, ranks_depth, ranks_feat = \
                ranks_bev[order], ranks_depth[order], ranks_feat[order]

            kept = torch.ones(
                ranks_bev.shape[0], device=ranks_bev.device, dtype=torch.bool)
            kept[1:] = ranks_bev[1:] != ranks_bev[:-1]
            interval_starts = torch.where(kept)[0].int()
            if len(interval_starts) == 0:
                return None, None, None, None, None
            interval_lengths = torch.zeros_like(interval_starts)
            interval_lengths[:-1] = interval_starts[1:] - interval_starts[:-1]
            interval_lengths[-1] = ranks_bev.shape[0] - interval_starts[-1]
            return ranks_bev.int().contiguous(), ranks_depth.int().contiguous(
            ), ranks_feat.int().contiguous(), interval_starts.int().contiguous(
            ), interval_lengths.int().contiguous()

    def pre_compute(self, input):
        if self.initial_flag:
            coor = self.get_ego_coor(*input[1:7])       # (B, N, D, fH, fW, 3)
            self.init_acceleration_v2(coor)
            self.initial_flag = False

    def view_transform_core(self, input, depth, tran_feat):
        """
        Args:
            input (list(torch.tensor)):
                imgs:  (B, N, 3, H, W)        # N_views = 6 * (N_history + 1)
                sensor2egos: (B, N, 4, 4)
                ego2globals: (B, N, 4, 4)
                intrins:     (B, N, 3, 3)
                post_rots:   (B, N, 3, 3)
                post_trans:  (B, N, 3)
                bda_rot:  (B, 3, 3)
            depth:  (B*N, D, fH, fW)
            tran_feat: (B*N, C, fH, fW)
        Returns:
            bev_feat: (B, C*Dz(=1), Dy, Dx)
            depth: (B*N, D, fH, fW)
        """
        B, N, C, H, W = input[0].shape

        # Lift-Splat
        if self.accelerate:
            feat = tran_feat.view(B, N, self.out_channels, H, W)      # (B, N, C, fH, fW)
            feat = feat.permute(0, 1, 3, 4, 2)      # (B, N, fH, fW, C)
            depth = depth.view(B, N, self.D, H, W)      # (B, N, D, fH, fW)
            bev_feat_shape = (depth.shape[0], int(self.grid_size[2]),
                              int(self.grid_size[1]), int(self.grid_size[0]),
                              feat.shape[-1])   # (B, Dz, Dy, Dx, C)
            bev_feat = bev_pool_v2(depth, feat, self.ranks_depth,
                                   self.ranks_feat, self.ranks_bev,
                                   bev_feat_shape, self.interval_starts,
                                   self.interval_lengths)   # (B, C, Dz, Dy, Dx)

            bev_feat = bev_feat.squeeze(2)      # (B, C, Dy, Dx)
        else:
            coor = self.get_ego_coor(*input[1:7])   # (B, N, D, fH, fW, 3)
            bev_feat = self.voxel_pooling_v2(
                coor, depth.view(B, N, self.D, H, W),
                tran_feat.view(B, N, self.out_channels, H, W))      # (B, C*Dz(=1), Dy, Dx)
        return bev_feat, depth

    def view_transform(self, input, depth, tran_feat):
        """
        Args:
            input (list(torch.tensor)):
                imgs:  (B, N, C, H, W)        # N_views = 6 * (N_history + 1)
                sensor2egos: (B, N, 4, 4)
                ego2globals: (B, N, 4, 4)
                intrins:     (B, N, 3, 3)
                post_rots:   (B, N, 3, 3)
                post_trans:  (B, N, 3)
                bda_rot:  (B, 3, 3)
            depth:  (B*N, D, fH, fW)
            tran_feat: (B*N, C, fH, fW)
        Returns:
            bev_feat: (B, C, Dy, Dx)
            depth: (B*N, D, fH, fW)
        """
        if self.accelerate:
            self.pre_compute(input)
        return self.view_transform_core(input, depth, tran_feat)

    #@torch.compile
    def forward(self, input):
        """Transform image-view feature into bird-eye-view feature.

        Args:
            input (list(torch.tensor)):
                imgs:  (B, N_views, 3, H, W)        # N_views = 6 * (N_history + 1)
                sensor2egos: (B, N_views, 4, 4)
                ego2globals: (B, N_views, 4, 4)
                intrins:     (B, N_views, 3, 3)
                post_rots:   (B, N_views, 3, 3)
                post_trans:  (B, N_views, 3)
                bda_rot:  (B, 3, 3)
        Returns:
            bev_feat: (B, C, Dy, Dx)
            depth: (B*N, D, fH, fW)
        """
        x = input[0]    # (B, N, C_in, fH, fW)
        B, N, C, H, W = x.shape
        x = x.view(B * N, C, H, W)      # (B*N, C_in, fH, fW)

        # (B*N, C_in, fH, fW) --> (B*N, D+C, fH, fW)
        x = self.depth_net(x)
        depth_digit = x[:, :self.D, ...]    # (B*N, D, fH, fW)
        tran_feat = x[:, self.D:self.D + self.out_channels, ...]    # (B*N, C, fH, fW)
        depth = depth_digit.softmax(dim=1)
        return self.view_transform(input, depth, tran_feat)

    def get_mlp_input(self, rot, tran, intrin, post_rot, post_tran, bda):
        return None


@NECKS.register_module()
class LSSViewTransformerBEVDepth(LSSViewTransformer):
    def __init__(self, loss_depth_weight=3.0, depthnet_cfg=dict(), **kwargs):
        super(LSSViewTransformerBEVDepth, self).__init__(**kwargs)
        self.loss_depth_weight = loss_depth_weight
        self.depth_net = DepthNet(
            in_channels=self.in_channels,
            mid_channels=self.in_channels,
            context_channels=self.out_channels,
            depth_channels=self.D,
            **depthnet_cfg)

    def get_mlp_input(self, sensor2ego, ego2global, intrin, post_rot, post_tran, bda):
        """
        Args:
            sensor2ego: (B, N_views=6, 4, 4)
            ego2global: (B, N_views=6, 4, 4)
            intrin: (B, N_views, 3, 3)
            post_rot: (B, N_views, 3, 3)
            post_tran: (B, N_views, 3)
            bda: (B, 3, 3)
        Returns:
            mlp_input: (B, N_views, 27)
        """
        B, N, _, _ = sensor2ego.shape
        bda = bda.view(B, 1, 3, 3).repeat(1, N, 1, 1)   # (B, 3, 3) --> (B, N, 3, 3)
        mlp_input = torch.stack([
            intrin[:, :, 0, 0],     # fx
            intrin[:, :, 1, 1],     # fy
            intrin[:, :, 0, 2],     # cx
            intrin[:, :, 1, 2],     # cy
            post_rot[:, :, 0, 0],
            post_rot[:, :, 0, 1],
            post_tran[:, :, 0],
            post_rot[:, :, 1, 0],
            post_rot[:, :, 1, 1],
            post_tran[:, :, 1],
            bda[:, :, 0, 0],
            bda[:, :, 0, 1],
            bda[:, :, 1, 0],
            bda[:, :, 1, 1],
            bda[:, :, 2, 2]
        ], dim=-1)      # (B, N_views, 15)
        sensor2ego = sensor2ego[:, :, :3, :].reshape(B, N, -1)
        mlp_input = torch.cat([mlp_input, sensor2ego], dim=-1)      # (B, N_views, 27)
        return mlp_input

    def forward(self, input, stereo_metas=None):
        """
        Args:
            input (list(torch.tensor)):
                imgs:  (B, N_views, 3, H, W)        # N_views = 6 * (N_history + 1)
                sensor2egos: (B, N_views, 4, 4)
                ego2globals: (B, N_views, 4, 4)
                intrins:     (B, N_views, 3, 3)
                post_rots:   (B, N_views, 3, 3)
                post_trans:  (B, N_views, 3)
                bda_rot:  (B, 3, 3)
                mlp_input: (B, N_views, 27)
            stereo_metas:  None or dict{
                k2s_sensor: (B, N_views, 4, 4)
                intrins: (B, N_views, 3, 3)
                post_rots: (B, N_views, 3, 3)
                post_trans: (B, N_views, 3)
                frustum: (D, fH_stereo, fW_stereo, 3)  3:(u, v, d)
                cv_downsample: 4,
                downsample: self.img_view_transformer.downsample=16,
                grid_config: self.img_view_transformer.grid_config,
                cv_feat_list: [feat_prev_iv, stereo_feat]
            }
        Returns:
            bev_feat: (B, C, Dy, Dx)
            depth: (B*N, D, fH, fW)
        """
        (x, rots, trans, intrins, post_rots, post_trans, bda,
         mlp_input) = input[:8]

        B, N, C, H, W = x.shape
        x = x.view(B * N, C, H, W)      # (B*N_views, C, fH, fW)
        x = self.depth_net(x, mlp_input, stereo_metas)      # (B*N_views, D+C_context, fH, fW)
        depth_digit = x[:, :self.D, ...]    # (B*N_views, D, fH, fW)
        tran_feat = x[:, self.D:self.D + self.out_channels, ...]    # (B*N_views, C_context, fH, fW)
        depth = depth_digit.softmax(dim=1)  # (B*N_views, D, fH, fW)
        bev_feat, depth = self.view_transform(input, depth, tran_feat)
        return bev_feat, depth

    def get_downsampled_gt_depth(self, gt_depths):
        """
        Input:
            gt_depths: (B, N_views, img_h, img_w)
        Output:
            gt_depths: (B*N_views*fH*fW, D)
        """
        B, N, H, W = gt_depths.shape
        # (B*N_views, fH, downsample, fW, downsample, 1)
        gt_depths = gt_depths.view(B * N,
                                   H // self.downsample, self.downsample,
                                   W // self.downsample, self.downsample,
                                   1)
        # (B*N_views, fH, fW, 1, downsample, downsample)
        gt_depths = gt_depths.permute(0, 1, 3, 5, 2, 4).contiguous()
        # (B*N_views*fH*fW, downsample, downsample)
        gt_depths = gt_depths.view(-1, self.downsample * self.downsample)
        gt_depths_tmp = torch.where(gt_depths == 0.0,
                                    1e5 * torch.ones_like(gt_depths),
                                    gt_depths)
        gt_depths = torch.min(gt_depths_tmp, dim=-1).values
        # (B*N_views, fH, fW)
        gt_depths = gt_depths.view(B * N, H // self.downsample, W // self.downsample)

        if not self.sid:
            # (D - (min_dist - interval_dist)) / interval_dist
            # = (D - min_dist) / interval_dist + 1
            gt_depths = (gt_depths - (self.grid_config['depth'][0] -
                                      self.grid_config['depth'][2])) / \
                        self.grid_config['depth'][2]
        else:
            gt_depths = torch.log(gt_depths) - torch.log(
                torch.tensor(self.grid_config['depth'][0]).float())
            gt_depths = gt_depths * (self.D - 1) / torch.log(
                torch.tensor(self.grid_config['depth'][1] - 1.).float() /
                self.grid_config['depth'][0])
            gt_depths = gt_depths + 1.

        gt_depths = torch.where((gt_depths < self.D + 1) & (gt_depths >= 0.0),
                                gt_depths, torch.zeros_like(gt_depths))     # (B*N_views, fH, fW)
        gt_depths = F.one_hot(
            gt_depths.long(), num_classes=self.D + 1).view(-1, self.D + 1)[:, 1:]   # (B*N_views*fH*fW, D)
        return gt_depths.float()

    @force_fp32()
    def get_depth_loss(self, depth_labels, depth_preds):
        """
        Args:
            depth_labels: (B, N_views, img_h, img_w)
            depth_preds: (B*N_views, D, fH, fW)
        Returns:

        """
        depth_labels = self.get_downsampled_gt_depth(depth_labels)      # (B*N_views*fH*fW, D)
        # (B*N_views, D, fH, fW) --> (B*N_views, fH, fW, D) --> (B*N_views*fH*fW, D)
        depth_preds = depth_preds.permute(0, 2, 3,
                                          1).contiguous().view(-1, self.D)
        fg_mask = torch.max(depth_labels, dim=1).values > 0.0
        depth_labels = depth_labels[fg_mask]
        depth_preds = depth_preds[fg_mask]
        with autocast(enabled=False):
            depth_loss = F.binary_cross_entropy(
                depth_preds,
                depth_labels,
                reduction='none',
            ).sum() / max(1.0, fg_mask.sum())
        return self.loss_depth_weight * depth_loss


@NECKS.register_module()
class LSSViewTransformerBEVStereo(LSSViewTransformerBEVDepth):
    def __init__(self,  **kwargs):
        super(LSSViewTransformerBEVStereo, self).__init__(**kwargs)
        # (D, fH_stereo, fW_stereo, 3)  3:(u, v, d)
        self.cv_frustum = self.create_frustum(kwargs['grid_config']['depth'],
                                              kwargs['input_size'],
                                              downsample=4)