bevdet4d.py 17.5 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# Copyright (c) Phigent Robotics. All rights reserved.
import torch
import torch.nn.functional as F
from mmcv.runner import force_fp32

from mmdet3d.models import DETECTORS
from mmdet3d.models import builder
from .bevdet import BEVDet


@DETECTORS.register_module()
class BEVDet4D(BEVDet):
    r"""BEVDet4D paradigm for multi-camera 3D object detection.

    Please refer to the `paper <https://arxiv.org/abs/2203.17054>`_

    Args:
        pre_process (dict | None): Configuration dict of BEV pre-process net.
        align_after_view_transfromation (bool): Whether to align the BEV
            Feature after view transformation. By default, the BEV feature of
            the previous frame is aligned during the view transformation.
        num_adj (int): Number of adjacent frames.
        with_prev (bool): Whether to set the BEV feature of previous frame as
            all zero. By default, False.
    """
    def __init__(self,
                 pre_process=None,
                 align_after_view_transfromation=False,
                 num_adj=1,
                 with_prev=True,
                 **kwargs):
        super(BEVDet4D, self).__init__(**kwargs)
        self.pre_process = pre_process is not None
        if self.pre_process:
            self.pre_process_net = builder.build_backbone(pre_process)

        self.align_after_view_transfromation = align_after_view_transfromation
        self.num_frame = num_adj + 1

        self.with_prev = with_prev
        self.grid = None

    def gen_grid(self, input, sensor2keyegos, bda, bda_adj=None):
        """
        Args:
            input: (B, C, Dy, Dx)  bev_feat
            sensor2keyegos: List[
                curr_sensor-->key_ego: (B, N_views, 4, 4)
                prev_sensor-->key_ego: (B, N_views, 4, 4)
            ]
            bda:  (B, 3, 3)
            bda_adj: None
        Returns:
            grid: (B, Dy, Dx, 2)
        """
        B, C, H, W = input.shape
        v = sensor2keyegos[0].shape[0]  # N_views
        if self.grid is None:
            # generate grid
            xs = torch.linspace(
                0, W - 1, W, dtype=input.dtype,
                device=input.device).view(1, W).expand(H, W)    # (Dy, Dx)
            ys = torch.linspace(
                0, H - 1, H, dtype=input.dtype,
                device=input.device).view(H, 1).expand(H, W)    # (Dy, Dx)
            grid = torch.stack((xs, ys, torch.ones_like(xs)), -1)   # (Dy, Dx, 3)   3: (x, y, 1)
            self.grid = grid
        else:
            grid = self.grid
        # (Dy, Dx, 3)  --> (1, Dy, Dx, 3) --> (B, Dy, Dx, 3) --> (B, Dy, Dx, 3, 1))     3: (grid_x, grid_y, 1)
        grid = grid.view(1, H, W, 3).expand(B, H, W, 3).view(B, H, W, 3, 1)

        curr_sensor2keyego = sensor2keyegos[0][:, 0:1, :, :]    # (B, 1, 4, 4)
        prev_sensor2keyego = sensor2keyegos[1][:, 0:1, :, :]    # (B, 1, 4, 4)

        # add bev data augmentation
        bda_ = torch.zeros((B, 1, 4, 4), dtype=grid.dtype).to(grid)     # (B, 1, 4, 4)
        bda_[:, :, :3, :3] = bda.unsqueeze(1)
        bda_[:, :, 3, 3] = 1
        curr_sensor2keyego = bda_.matmul(curr_sensor2keyego)        # (B, 1, 4, 4)
        if bda_adj is not None:
            bda_ = torch.zeros((B, 1, 4, 4), dtype=grid.dtype).to(grid)
            bda_[:, :, :3, :3] = bda_adj.unsqueeze(1)
            bda_[:, :, 3, 3] = 1
        prev_sensor2keyego = bda_.matmul(prev_sensor2keyego)        # (B, 1, 4, 4)

        # transformation from current ego frame to adjacent ego frame
        # key_ego --> prev_cam_front --> prev_ego
        keyego2adjego = curr_sensor2keyego.matmul(torch.inverse(prev_sensor2keyego))
        keyego2adjego = keyego2adjego.unsqueeze(dim=1)      # (B, 1, 1, 4, 4)

        # (B, 1, 1, 3, 3)
        keyego2adjego = keyego2adjego[..., [True, True, False, True], :][..., [True, True, False, True]]

        # x = grid_x * vx + x_min;  y = grid_y * vy + y_min;
        # feat2bev:
        # [[vx, 0, x_min],
        #  [0, vy, y_min],
        #  [0,  0,   1  ]]
        feat2bev = torch.zeros((3, 3), dtype=grid.dtype).to(grid)
        feat2bev[0, 0] = self.img_view_transformer.grid_interval[0]
        feat2bev[1, 1] = self.img_view_transformer.grid_interval[1]
        feat2bev[0, 2] = self.img_view_transformer.grid_lower_bound[0]
        feat2bev[1, 2] = self.img_view_transformer.grid_lower_bound[1]
        feat2bev[2, 2] = 1
        feat2bev = feat2bev.view(1, 3, 3)       # (1, 3, 3)

        # curr_feat_grid --> key ego --> prev_cam --> prev_ego --> prev_feat_grid
        tf = torch.inverse(feat2bev).matmul(keyego2adjego).matmul(feat2bev)    # (B, 1, 1, 3, 3)
        grid = tf.matmul(grid)      # (B, Dy, Dx, 3, 1)    3: (grid_x, grid_y, 1)
        normalize_factor = torch.tensor([W - 1.0, H - 1.0],
                                        dtype=input.dtype,
                                        device=input.device)    # (2, )
        # (B, Dy, Dx, 2)
        grid = grid[:, :, :, :2, 0] / normalize_factor.view(1, 1, 1, 2) * 2.0 - 1.0
        return grid

    @force_fp32()
    def shift_feature(self, input, sensor2keyegos, bda, bda_adj=None):
        """
        Args:
            input: (B, C, Dy, Dx)  bev_feat
            sensor2keyegos: List[
                curr_sensor-->key_ego: (B, N_views, 4, 4)
                prev_sensor-->key_ego: (B, N_views, 4, 4)
            ]
            bda:  (B, 3, 3)
            bda_adj: None
        Returns:
            output: aligned bev feat (B, C, Dy, Dx).
        """
        grid = self.gen_grid(input, sensor2keyegos, bda, bda_adj=bda_adj)   # grid: (B, Dy, Dx, 2),  介于(-1, 1)
        output = F.grid_sample(input, grid.to(input.dtype), align_corners=True)     # (B, C, Dy, Dx)
        return output

    def prepare_bev_feat(self, img, sensor2egos, ego2globals, intrin, post_rot, post_tran,
                         bda, mlp_input):
        """
        Args:
            imgs:  (B, N_views, 3, H, W)
            sensor2egos: (B, N_views, 4, 4)
            ego2globals: (B, N_views, 4, 4)
            intrins:     (B, N_views, 3, 3)
            post_rots:   (B, N_views, 3, 3)
            post_trans:  (B, N_views, 3)
            bda_rot:  (B, 3, 3)
            mlp_input:
        Returns:
            bev_feat: (B, C, Dy, Dx)
            depth: (B*N, D, fH, fW)
        """
        x, _ = self.image_encoder(img)      # x: (B, N, C, fH, fW)
        # bev_feat: (B, C * Dz(=1), Dy, Dx)
        # depth: (B * N, D, fH, fW)
        bev_feat, depth = self.img_view_transformer(
            [x, sensor2egos, ego2globals, intrin, post_rot, post_tran, bda, mlp_input])

        if self.pre_process:
            bev_feat = self.pre_process_net(bev_feat)[0]    # (B, C, Dy, Dx)
        return bev_feat, depth

    def extract_img_feat_sequential(self, inputs, feat_prev):
        """
        Args:
            inputs:
                curr_img: (1, N_views, 3, H, W)
                sensor2keyegos_curr:  (N_prev, N_views, 4, 4)
                ego2globals_curr:  (N_prev, N_views, 4, 4)
                intrins:  (1, N_views, 3, 3)
                sensor2keyegos_prev:  (N_prev, N_views, 4, 4)
                ego2globals_prev:  (N_prev, N_views, 4, 4)
                post_rots:  (1, N_views, 3, 3)
                post_trans: (1, N_views, 3, )
                bda_curr:  (N_prev, 3, 3)
            feat_prev: (N_prev, C, Dy, Dx)
        Returns:

        """
        imgs, sensor2keyegos_curr, ego2globals_curr, intrins = inputs[:4]
        sensor2keyegos_prev, _, post_rots, post_trans, bda = inputs[4:]
        bev_feat_list = []
        mlp_input = self.img_view_transformer.get_mlp_input(
            sensor2keyegos_curr[0:1, ...], ego2globals_curr[0:1, ...],
            intrins, post_rots, post_trans, bda[0:1, ...])
        inputs_curr = (imgs, sensor2keyegos_curr[0:1, ...],
                       ego2globals_curr[0:1, ...], intrins, post_rots,
                       post_trans, bda[0:1, ...], mlp_input)

        # (1, C, Dx, Dy), (1*N, D, fH, fW)
        bev_feat, depth = self.prepare_bev_feat(*inputs_curr)
        bev_feat_list.append(bev_feat)

        # align the feat_prev
        _, C, H, W = feat_prev.shape
        # feat_prev: (N_prev, C, Dy, Dx)
        feat_prev = \
            self.shift_feature(feat_prev,   # (N_prev, C, Dy, Dx)
                               [sensor2keyegos_curr,    # (N_prev, N_views, 4, 4)
                                sensor2keyegos_prev],   # (N_prev, N_views, 4, 4)
                               bda  # (N_prev, 3, 3)
                               )
        bev_feat_list.append(feat_prev.view(1, (self.num_frame - 1) * C, H, W))     # (1, N_prev*C, Dy, Dx)

        bev_feat = torch.cat(bev_feat_list, dim=1)      # (1, N_frames*C, Dy, Dx)
        x = self.bev_encoder(bev_feat)
        return [x], depth

    def prepare_inputs(self, img_inputs, stereo=False):
        """
        Args:
            img_inputs:
                imgs:  (B, N, 3, H, W)        # N = 6 * (N_history + 1)
                sensor2egos: (B, N, 4, 4)
                ego2globals: (B, N, 4, 4)
                intrins:     (B, N, 3, 3)
                post_rots:   (B, N, 3, 3)
                post_trans:  (B, N, 3)
                bda_rot:  (B, 3, 3)
            stereo: bool

        Returns:
            imgs: List[(B, N_views, C, H, W), (B, N_views, C, H, W), ...]       len = N_frames
            sensor2keyegos: List[(B, N_views, 4, 4), (B, N_views, 4, 4), ...]
            ego2globals: List[(B, N_views, 4, 4), (B, N_views, 4, 4), ...]
            intrins: List[(B, N_views, 3, 3), (B, N_views, 3, 3), ...]
            post_rots: List[(B, N_views, 3, 3), (B, N_views, 3, 3), ...]
            post_trans: List[(B, N_views, 3), (B, N_views, 3), ...]
            bda: (B, 3, 3)
        """
        B, N, C, H, W = img_inputs[0].shape
        N = N // self.num_frame     # N_views = 6
        imgs = img_inputs[0].view(B, N, self.num_frame, C, H, W)    # (B, N_views, N_frames, C, H, W)
        imgs = torch.split(imgs, 1, 2)
        imgs = [t.squeeze(2) for t in imgs]     # List[(B, N_views, C, H, W), (B, N_views, C, H, W), ...]
        sensor2egos, ego2globals, intrins, post_rots, post_trans, bda = \
            img_inputs[1:7]

        sensor2egos = sensor2egos.view(B, self.num_frame, N, 4, 4)
        ego2globals = ego2globals.view(B, self.num_frame, N, 4, 4)

        # calculate the transformation from sensor to key ego
        # key_ego --> global  (B, 1, 1, 4, 4)
        keyego2global = ego2globals[:, 0, 0, ...].unsqueeze(1).unsqueeze(1)
        # global --> key_ego  (B, 1, 1, 4, 4)
        global2keyego = torch.inverse(keyego2global.double())
        # sensor --> ego --> global --> key_ego
        sensor2keyegos = \
            global2keyego @ ego2globals.double() @ sensor2egos.double()     # (B, N_frames, N_views, 4, 4)
        sensor2keyegos = sensor2keyegos.float()

        # --------------------  for stereo --------------------------
        curr2adjsensor = None
        if stereo:
            # (B, N_frames, N_views, 4, 4),  (B, N_frames, N_views, 4, 4)
            sensor2egos_cv, ego2globals_cv = sensor2egos, ego2globals
            sensor2egos_curr = \
                sensor2egos_cv[:, :self.temporal_frame, ...].double()   # (B, N_temporal=2, N_views, 4, 4)
            ego2globals_curr = \
                ego2globals_cv[:, :self.temporal_frame, ...].double()   # (B, N_temporal=2, N_views, 4, 4)
            sensor2egos_adj = \
                sensor2egos_cv[:, 1:self.temporal_frame + 1, ...].double()    # (B, N_temporal=2, N_views, 4, 4)
            ego2globals_adj = \
                ego2globals_cv[:, 1:self.temporal_frame + 1, ...].double()    # (B, N_temporal=2, N_views, 4, 4)

            # curr_sensor --> curr_ego --> global --> prev_ego --> prev_sensor
            curr2adjsensor = \
                torch.inverse(ego2globals_adj @ sensor2egos_adj) \
                @ ego2globals_curr @ sensor2egos_curr       # (B, N_temporal=2, N_views, 4, 4)
            curr2adjsensor = curr2adjsensor.float()         # (B, N_temporal=2, N_views, 4, 4)
            curr2adjsensor = torch.split(curr2adjsensor, 1, 1)
            curr2adjsensor = [p.squeeze(1) for p in curr2adjsensor]
            curr2adjsensor.extend([None for _ in range(self.extra_ref_frames)])
            # curr2adjsensor: List[(B, N_views, 4, 4), (B, N_views, 4, 4), None]
            assert len(curr2adjsensor) == self.num_frame
        # --------------------  for stereo --------------------------

        extra = [
            sensor2keyegos,     # (B, N_frames, N_views, 4, 4)
            ego2globals,        # (B, N_frames, N_views, 4, 4)
            intrins.view(B, self.num_frame, N, 3, 3),   # (B, N_frames, N_views, 3, 3)
            post_rots.view(B, self.num_frame, N, 3, 3),     # (B, N_frames, N_views, 3, 3)
            post_trans.view(B, self.num_frame, N, 3)        # (B, N_frames, N_views, 3)
        ]
        extra = [torch.split(t, 1, 1) for t in extra]
        extra = [[p.squeeze(1) for p in t] for t in extra]
        sensor2keyegos, ego2globals, intrins, post_rots, post_trans = extra
        return imgs, sensor2keyegos, ego2globals, intrins, post_rots, post_trans, \
               bda, curr2adjsensor

    def extract_img_feat(self,
                         img_inputs,
                         img_metas,
                         pred_prev=False,
                         sequential=False,
                         **kwargs):
        """
        Args:
            img_inputs:
                imgs:  (B, N, 3, H, W)        # N = 6 * (N_history + 1)
                sensor2egos: (B, N, 4, 4)
                ego2globals: (B, N, 4, 4)
                intrins:     (B, N, 3, 3)
                post_rots:   (B, N, 3, 3)
                post_trans:  (B, N, 3)
                bda_rot:  (B, 3, 3)
            img_metas:
            **kwargs:
        Returns:
            x: [(B, C', H', W'), ]
            depth: (B*N_views, D, fH, fW)
        """
        if sequential:
            return self.extract_img_feat_sequential(img_inputs, kwargs['feat_prev'])
        imgs, sensor2keyegos, ego2globals, intrins, post_rots, post_trans, \
        bda, _ = self.prepare_inputs(img_inputs)

        """Extract features of images."""
        bev_feat_list = []
        depth_list = []
        key_frame = True  # back propagation for key frame only
        for img, sensor2keyego, ego2global, intrin, post_rot, post_tran in zip(
                imgs, sensor2keyegos, ego2globals, intrins, post_rots, post_trans):
            if key_frame or self.with_prev:
                if self.align_after_view_transfromation:
                    sensor2keyego, ego2global = sensor2keyegos[0], ego2globals[0]

                mlp_input = self.img_view_transformer.get_mlp_input(
                    sensor2keyegos[0], ego2globals[0], intrin, post_rot, post_tran, bda)    # (B, N_views, 27)

                inputs_curr = (img, sensor2keyego, ego2global, intrin, post_rot,
                               post_tran, bda, mlp_input)
                if key_frame:
                    # bev_feat: (B, C, Dy, Dx)
                    # depth: (B*N_views, D, fH, fW)
                    bev_feat, depth = self.prepare_bev_feat(*inputs_curr)
                else:
                    with torch.no_grad():
                        bev_feat, depth = self.prepare_bev_feat(*inputs_curr)
            else:
                # https://github.com/HuangJunJie2017/BEVDet/issues/275
                bev_feat = torch.zeros_like(bev_feat_list[0])
                depth = None
            bev_feat_list.append(bev_feat)
            depth_list.append(depth)
            key_frame = False

        # bev_feat_list: List[(B, C, Dy, Dx), (B, C, Dy, Dx), ...]
        # depth_list: List[(B*N_views, D, fH, fW), (B*N_views, D, fH, fW), ...]

        if pred_prev:
            assert self.align_after_view_transfromation
            assert sensor2keyegos[0].shape[0] == 1      # batch_size = 1
            feat_prev = torch.cat(bev_feat_list[1:], dim=0)
            # (1, N_views, 4, 4) --> (N_prev, N_views, 4, 4)
            ego2globals_curr = \
                ego2globals[0].repeat(self.num_frame - 1, 1, 1, 1)
            # (1, N_views, 4, 4) --> (N_prev, N_views, 4, 4)
            sensor2keyegos_curr = \
                sensor2keyegos[0].repeat(self.num_frame - 1, 1, 1, 1)
            ego2globals_prev = torch.cat(ego2globals[1:], dim=0)            # (N_prev, N_views, 4, 4)
            sensor2keyegos_prev = torch.cat(sensor2keyegos[1:], dim=0)      # (N_prev, N_views, 4, 4)
            bda_curr = bda.repeat(self.num_frame - 1, 1, 1)     # (N_prev, 3, 3)
            return feat_prev, [imgs[0],     # (1, N_views, 3, H, W)
                               sensor2keyegos_curr,     # (N_prev, N_views, 4, 4)
                               ego2globals_curr,        # (N_prev, N_views, 4, 4)
                               intrins[0],          # (1, N_views, 3, 3)
                               sensor2keyegos_prev,     # (N_prev, N_views, 4, 4)
                               ego2globals_prev,        # (N_prev, N_views, 4, 4)
                               post_rots[0],    # (1, N_views, 3, 3)
                               post_trans[0],   # (1, N_views, 3, )
                               bda_curr]        # (N_prev, 3, 3)

        if self.align_after_view_transfromation:
            for adj_id in range(1, self.num_frame):
                bev_feat_list[adj_id] = self.shift_feature(
                    bev_feat_list[adj_id],  # (B, C, Dy, Dx)
                    [sensor2keyegos[0],     # (B, N_views, 4, 4)
                     sensor2keyegos[adj_id]     # (B, N_views, 4, 4)
                    ],
                    bda     # (B, 3, 3)
                )   # (B, C, Dy, Dx)

        bev_feat = torch.cat(bev_feat_list, dim=1)      # (B, N_frames*C, Dy, Dx)
        x = self.bev_encoder(bev_feat)
        return [x], depth_list[0]