bevdepth4d.py 2.49 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Copyright (c) Phigent Robotics. All rights reserved.
import torch
import torch.nn.functional as F
from mmcv.runner import force_fp32

from mmdet3d.models import DETECTORS
from mmdet3d.models import builder
from .bevdet4d import BEVDet4D


@DETECTORS.register_module()
class BEVDepth4D(BEVDet4D):
    def forward_train(self,
                      points=None,
                      img_metas=None,
                      gt_bboxes_3d=None,
                      gt_labels_3d=None,
                      gt_labels=None,
                      gt_bboxes=None,
                      img_inputs=None,
                      proposals=None,
                      gt_bboxes_ignore=None,
                      **kwargs):
        """Forward training function.

        Args:
            points (list[torch.Tensor], optional): Points of each sample.
                Defaults to None.
            img_metas (list[dict], optional): Meta information of each sample.
                Defaults to None.
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`], optional):
                Ground truth 3D boxes. Defaults to None.
            gt_labels_3d (list[torch.Tensor], optional): Ground truth labels
                of 3D boxes. Defaults to None.
            gt_labels (list[torch.Tensor], optional): Ground truth labels
                of 2D boxes in images. Defaults to None.
            gt_bboxes (list[torch.Tensor], optional): Ground truth 2D boxes in
                images. Defaults to None.
            img (torch.Tensor optional): Images of each sample with shape
                (N, C, H, W). Defaults to None.
            proposals ([list[torch.Tensor], optional): Predicted proposals
                used for training Fast RCNN. Defaults to None.
            gt_bboxes_ignore (list[torch.Tensor], optional): Ground truth
                2D boxes in images to be ignored. Defaults to None.

        Returns:
            dict: Losses of different branches.
        """
        img_feats, pts_feats, depth = self.extract_feat(
            points, img_inputs=img_inputs, img_metas=img_metas, **kwargs)
        gt_depth = kwargs['gt_depth']   # (B, N_views, img_H, img_W)
        loss_depth = self.img_view_transformer.get_depth_loss(gt_depth, depth)
        losses = dict(loss_depth=loss_depth)
        losses_pts = self.forward_pts_train(img_feats, gt_bboxes_3d,
                                            gt_labels_3d, img_metas,
                                            gt_bboxes_ignore)
        losses.update(losses_pts)
        return losses