swin.py 36.4 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from copy import deepcopy

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_norm_layer, trunc_normal_init, build_conv_layer
from mmcv.cnn.bricks.transformer import FFN, build_dropout
from mmcv.cnn.utils.weight_init import constant_init
from mmcv.runner import _load_checkpoint
from mmcv.runner.base_module import BaseModule, ModuleList
from torch.nn.modules.linear import Linear
from torch.nn.modules.normalization import LayerNorm
import torch.utils.checkpoint as checkpoint

from mmseg.ops import resize
from mmdet3d.utils import get_root_logger
from mmdet3d.models.builder import BACKBONES
from mmcv.cnn.bricks.registry import ATTENTION
from torch.nn.modules.utils import _pair as to_2tuple
from collections import OrderedDict


def swin_convert(ckpt):
    new_ckpt = OrderedDict()

    def correct_unfold_reduction_order(x):
        out_channel, in_channel = x.shape
        x = x.reshape(out_channel, 4, in_channel // 4)
        x = x[:, [0, 2, 1, 3], :].transpose(1,
                                            2).reshape(out_channel, in_channel)
        return x

    def correct_unfold_norm_order(x):
        in_channel = x.shape[0]
        x = x.reshape(4, in_channel // 4)
        x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel)
        return x

    for k, v in ckpt.items():
        if k.startswith('head'):
            continue
        elif k.startswith('layers'):
            new_v = v
            if 'attn.' in k:
                new_k = k.replace('attn.', 'attn.w_msa.')
            elif 'mlp.' in k:
                if 'mlp.fc1.' in k:
                    new_k = k.replace('mlp.fc1.', 'ffn.layers.0.0.')
                elif 'mlp.fc2.' in k:
                    new_k = k.replace('mlp.fc2.', 'ffn.layers.1.')
                else:
                    new_k = k.replace('mlp.', 'ffn.')
            elif 'downsample' in k:
                new_k = k
                if 'reduction.' in k:
                    new_v = correct_unfold_reduction_order(v)
                elif 'norm.' in k:
                    new_v = correct_unfold_norm_order(v)
            else:
                new_k = k
            new_k = new_k.replace('layers', 'stages', 1)
        elif k.startswith('patch_embed'):
            new_v = v
            if 'proj' in k:
                new_k = k.replace('proj', 'projection')
            else:
                new_k = k
        else:
            new_v = v
            new_k = k

        new_ckpt[new_k] = new_v

    return new_ckpt

# Modified from Pytorch-Image-Models
class PatchEmbed(BaseModule):
    """Image to Patch Embedding V2.

    We use a conv layer to implement PatchEmbed.
    Args:
        in_channels (int): The num of input channels. Default: 3
        embed_dims (int): The dimensions of embedding. Default: 768
        conv_type (dict, optional): The config dict for conv layers type
            selection. Default: None.
        kernel_size (int): The kernel_size of embedding conv. Default: 16.
        stride (int): The slide stride of embedding conv.
            Default: None (Default to be equal with kernel_size).
        padding (int): The padding length of embedding conv. Default: 0.
        dilation (int): The dilation rate of embedding conv. Default: 1.
        pad_to_patch_size (bool, optional): Whether to pad feature map shape
            to multiple patch size. Default: True.
        norm_cfg (dict, optional): Config dict for normalization layer.
        init_cfg (`mmcv.ConfigDict`, optional): The Config for initialization.
            Default: None.
    """

    def __init__(self,
                 in_channels=3,
                 embed_dims=768,
                 conv_type=None,
                 kernel_size=16,
                 stride=16,
                 padding=0,
                 dilation=1,
                 pad_to_patch_size=True,
                 norm_cfg=None,
                 init_cfg=None):
        super(PatchEmbed, self).__init__()

        self.embed_dims = embed_dims
        self.init_cfg = init_cfg

        if stride is None:
            stride = kernel_size

        self.pad_to_patch_size = pad_to_patch_size

        # The default setting of patch size is equal to kernel size.
        patch_size = kernel_size
        if isinstance(patch_size, int):
            patch_size = to_2tuple(patch_size)
        elif isinstance(patch_size, tuple):
            if len(patch_size) == 1:
                patch_size = to_2tuple(patch_size[0])
            assert len(patch_size) == 2, \
                f'The size of patch should have length 1 or 2, ' \
                f'but got {len(patch_size)}'

        self.patch_size = patch_size

        # Use conv layer to embed
        conv_type = conv_type or 'Conv2d'
        self.projection = build_conv_layer(
            dict(type=conv_type),
            in_channels=in_channels,
            out_channels=embed_dims,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation)

        if norm_cfg is not None:
            self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
        else:
            self.norm = None

    def forward(self, x):
        H, W = x.shape[2], x.shape[3]

        # TODO: Process overlapping op
        if self.pad_to_patch_size:
            # Modify H, W to multiple of patch size.
            if H % self.patch_size[0] != 0:
                x = F.pad(
                    x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
            if W % self.patch_size[1] != 0:
                x = F.pad(
                    x, (0, self.patch_size[1] - W % self.patch_size[1], 0, 0))

        x = self.projection(x)
        self.DH, self.DW = x.shape[2], x.shape[3]
        x = x.flatten(2).transpose(1, 2)

        if self.norm is not None:
            x = self.norm(x)

        return x



class PatchMerging(BaseModule):
    """Merge patch feature map.

    This layer use nn.Unfold to group feature map by kernel_size, and use norm
    and linear layer to embed grouped feature map.
    Args:
        in_channels (int): The num of input channels.
        out_channels (int): The num of output channels.
        stride (int | tuple): the stride of the sliding length in the
            unfold layer. Defaults: 2. (Default to be equal with kernel_size).
        bias (bool, optional): Whether to add bias in linear layer or not.
            Defaults: False.
        norm_cfg (dict, optional): Config dict for normalization layer.
            Defaults: dict(type='LN').
        init_cfg (dict, optional): The extra config for initialization.
            Defaults: None.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 stride=2,
                 bias=False,
                 norm_cfg=dict(type='LN'),
                 init_cfg=None):
        super().__init__(init_cfg)
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.stride = stride

        self.sampler = nn.Unfold(
            kernel_size=stride, dilation=1, padding=0, stride=stride)

        sample_dim = stride**2 * in_channels

        if norm_cfg is not None:
            self.norm = build_norm_layer(norm_cfg, sample_dim)[1]
        else:
            self.norm = None

        self.reduction = nn.Linear(sample_dim, out_channels, bias=bias)

    def forward(self, x, hw_shape):
        """
        x: x.shape -> [B, H*W, C]
        hw_shape: (H, W)
        """
        B, L, C = x.shape
        H, W = hw_shape
        assert L == H * W, 'input feature has wrong size'

        x = x.view(B, H, W, C).permute([0, 3, 1, 2])  # B, C, H, W

        # stride is fixed to be equal to kernel_size.
        if (H % self.stride != 0) or (W % self.stride != 0):
            x = F.pad(x, (0, W % self.stride, 0, H % self.stride))

        # Use nn.Unfold to merge patch. About 25% faster than original method,
        # but need to modify pretrained model for compatibility
        x = self.sampler(x)  # B, 4*C, H/2*W/2
        x = x.transpose(1, 2)  # B, H/2*W/2, 4*C

        x = self.norm(x) if self.norm else x
        x = self.reduction(x)

        down_hw_shape = (H + 1) // 2, (W + 1) // 2
        return x, down_hw_shape


@ATTENTION.register_module()
class WindowMSA(BaseModule):
    """Window based multi-head self-attention (W-MSA) module with relative
    position bias.

    Args:
        embed_dims (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to q, k, v.
            Default: True.
        qk_scale (float | None, optional): Override default qk scale of
            head_dim ** -0.5 if set. Default: None.
        attn_drop_rate (float, optional): Dropout ratio of attention weight.
            Default: 0.0
        proj_drop_rate (float, optional): Dropout ratio of output. Default: 0.0
        init_cfg (dict | None, optional): The Config for initialization.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 window_size,
                 qkv_bias=True,
                 qk_scale=None,
                 attn_drop_rate=0.,
                 proj_drop_rate=0.,
                 init_cfg=None):

        super().__init__()
        self.embed_dims = embed_dims
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_embed_dims = embed_dims // num_heads
        self.scale = qk_scale or head_embed_dims**-0.5
        self.init_cfg = init_cfg

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
                        num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # About 2x faster than original impl
        Wh, Ww = self.window_size
        rel_index_coords = self.double_step_seq(2 * Ww - 1, Wh, 1, Ww)
        rel_position_index = rel_index_coords + rel_index_coords.T
        rel_position_index = rel_position_index.flip(1).contiguous()
        self.register_buffer('relative_position_index', rel_position_index)

        self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop_rate)
        self.proj = nn.Linear(embed_dims, embed_dims)
        self.proj_drop = nn.Dropout(proj_drop_rate)

        self.softmax = nn.Softmax(dim=-1)

    def init_weights(self):
        trunc_normal_init(self.relative_position_bias_table, std=0.02)

    def forward(self, x, mask=None):
        """
        Args:

            x (tensor): input features with shape of (num_windows*B, N, C)
            mask (tensor | None, Optional): mask with shape of (num_windows,
                Wh*Ww, Wh*Ww), value should be between (-inf, 0].
        """
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
                                  C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[
            2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[
            self.relative_position_index.view(-1)].view(
                self.window_size[0] * self.window_size[1],
                self.window_size[0] * self.window_size[1],
                -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(
            2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B // nW, nW, self.num_heads, N,
                             N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    @staticmethod
    def double_step_seq(step1, len1, step2, len2):
        seq1 = torch.arange(0, step1 * len1, step1)
        seq2 = torch.arange(0, step2 * len2, step2)
        return (seq1[:, None] + seq2[None, :]).reshape(1, -1)


@ATTENTION.register_module()
class ShiftWindowMSA(BaseModule):
    """Shift Window Multihead Self-Attention Module.

    Args:
        embed_dims (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): The height and width of the window.
        shift_size (int, optional): The shift step of each window towards
            right-bottom. If zero, act as regular window-msa. Defaults to 0.
        qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
            Default: True
        qk_scale (float | None, optional): Override default qk scale of
            head_dim ** -0.5 if set. Defaults: None.
        attn_drop_rate (float, optional): Dropout ratio of attention weight.
            Defaults: 0.
        proj_drop_rate (float, optional): Dropout ratio of output.
            Defaults: 0.
        dropout_layer (dict, optional): The dropout_layer used before output.
            Defaults: dict(type='DropPath', drop_prob=0.).
        init_cfg (dict, optional): The extra config for initialization.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 window_size,
                 shift_size=0,
                 qkv_bias=True,
                 qk_scale=None,
                 attn_drop_rate=0,
                 proj_drop_rate=0,
                 dropout_layer=dict(type='DropPath', drop_prob=0.),
                 init_cfg=None):
        super().__init__(init_cfg)

        self.window_size = window_size
        self.shift_size = shift_size
        assert 0 <= self.shift_size < self.window_size

        self.w_msa = WindowMSA(
            embed_dims=embed_dims,
            num_heads=num_heads,
            window_size=to_2tuple(window_size),
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop_rate=attn_drop_rate,
            proj_drop_rate=proj_drop_rate,
            init_cfg=None)

        self.drop = build_dropout(dropout_layer)

    def forward(self, query, hw_shape):
        B, L, C = query.shape
        H, W = hw_shape
        assert L == H * W, 'input feature has wrong size'
        query = query.view(B, H, W, C)

        # pad feature maps to multiples of window size
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        query = F.pad(query, (0, 0, 0, pad_r, 0, pad_b))
        H_pad, W_pad = query.shape[1], query.shape[2]

        # cyclic shift
        if self.shift_size > 0:
            shifted_query = torch.roll(
                query,
                shifts=(-self.shift_size, -self.shift_size),
                dims=(1, 2))

            # calculate attention mask for SW-MSA
            img_mask = torch.zeros((1, H_pad, W_pad, 1),
                                   device=query.device)  # 1 H W 1
            h_slices = (slice(0, -self.window_size),
                        slice(-self.window_size,
                              -self.shift_size), slice(-self.shift_size, None))
            w_slices = (slice(0, -self.window_size),
                        slice(-self.window_size,
                              -self.shift_size), slice(-self.shift_size, None))
            cnt = 0
            for h in h_slices:
                for w in w_slices:
                    img_mask[:, h, w, :] = cnt
                    cnt += 1

            # nW, window_size, window_size, 1
            mask_windows = self.window_partition(img_mask)
            mask_windows = mask_windows.view(
                -1, self.window_size * self.window_size)
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
            attn_mask = attn_mask.masked_fill(attn_mask != 0,
                                              float(-100.0)).masked_fill(
                                                  attn_mask == 0, float(0.0))
        else:
            shifted_query = query
            attn_mask = None

        # nW*B, window_size, window_size, C
        query_windows = self.window_partition(shifted_query)
        # nW*B, window_size*window_size, C
        query_windows = query_windows.view(-1, self.window_size**2, C)

        # W-MSA/SW-MSA (nW*B, window_size*window_size, C)
        attn_windows = self.w_msa(query_windows, mask=attn_mask)

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size,
                                         self.window_size, C)

        # B H' W' C
        shifted_x = self.window_reverse(attn_windows, H_pad, W_pad)
        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(
                shifted_x,
                shifts=(self.shift_size, self.shift_size),
                dims=(1, 2))
        else:
            x = shifted_x

        if pad_r > 0 or pad_b:
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        x = self.drop(x)
        return x

    def window_reverse(self, windows, H, W):
        """
        Args:
            windows: (num_windows*B, window_size, window_size, C)
            window_size (int): Window size
            H (int): Height of image
            W (int): Width of image
        Returns:
            x: (B, H, W, C)
        """
        window_size = self.window_size
        B = int(windows.shape[0] / (H * W / window_size / window_size))
        x = windows.view(B, H // window_size, W // window_size, window_size,
                         window_size, -1)
        x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
        return x

    def window_partition(self, x):
        """
        Args:
            x: (B, H, W, C)
            window_size (int): window size
        Returns:
            windows: (num_windows*B, window_size, window_size, C)
        """
        B, H, W, C = x.shape
        window_size = self.window_size
        x = x.view(B, H // window_size, window_size, W // window_size,
                   window_size, C)
        windows = x.permute(0, 1, 3, 2, 4, 5).contiguous()
        windows = windows.view(-1, window_size, window_size, C)
        return windows


class SwinBlock(BaseModule):
    """"
    Args:
        embed_dims (int): The feature dimension.
        num_heads (int): Parallel attention heads.
        feedforward_channels (int): The hidden dimension for FFNs.
        window size (int, optional): The local window scale. Default: 7.
        shift (bool): whether to shift window or not. Default False.
        qkv_bias (int, optional): enable bias for qkv if True. Default: True.
        qk_scale (float | None, optional): Override default qk scale of
            head_dim ** -0.5 if set. Default: None.
        drop_rate (float, optional): Dropout rate. Default: 0.
        attn_drop_rate (float, optional): Attention dropout rate. Default: 0.
        drop_path_rate (float, optional): Stochastic depth rate. Default: 0.2.
        act_cfg (dict, optional): The config dict of activation function.
            Default: dict(type='GELU').
        norm_cfg (dict, optional): The config dict of nomalization.
            Default: dict(type='LN').
        init_cfg (dict | list | None, optional): The init config.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 feedforward_channels,
                 window_size=7,
                 shift=False,
                 qkv_bias=True,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN'),
                 init_cfg=None):

        super(SwinBlock, self).__init__()

        self.init_cfg = init_cfg

        self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]
        self.attn = ShiftWindowMSA(
            embed_dims=embed_dims,
            num_heads=num_heads,
            window_size=window_size,
            shift_size=window_size // 2 if shift else 0,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop_rate=attn_drop_rate,
            proj_drop_rate=drop_rate,
            dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
            init_cfg=None)

        self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
        self.ffn = FFN(
            embed_dims=embed_dims,
            feedforward_channels=feedforward_channels,
            num_fcs=2,
            ffn_drop=drop_rate,
            dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
            act_cfg=act_cfg,
            add_identity=True,
            init_cfg=None)

    def forward(self, x, hw_shape):
        identity = x
        x = self.norm1(x)
        x = self.attn(x, hw_shape)

        x = x + identity

        identity = x
        x = self.norm2(x)
        x = self.ffn(x, identity=identity)

        return x


class SwinBlockSequence(BaseModule):
    """Implements one stage in Swin Transformer.

    Args:
        embed_dims (int): The feature dimension.
        num_heads (int): Parallel attention heads.
        feedforward_channels (int): The hidden dimension for FFNs.
        depth (int): The number of blocks in this stage.
        window size (int): The local window scale. Default: 7.
        qkv_bias (int): enable bias for qkv if True. Default: True.
        qk_scale (float | None, optional): Override default qk scale of
            head_dim ** -0.5 if set. Default: None.
        drop_rate (float, optional): Dropout rate. Default: 0.
        attn_drop_rate (float, optional): Attention dropout rate. Default: 0.
        drop_path_rate (float, optional): Stochastic depth rate. Default: 0.2.
        downsample (BaseModule | None, optional): The downsample operation
            module. Default: None.
        act_cfg (dict, optional): The config dict of activation function.
            Default: dict(type='GELU').
        norm_cfg (dict, optional): The config dict of nomalization.
            Default: dict(type='LN').
        init_cfg (dict | list | None, optional): The init config.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 feedforward_channels,
                 depth,
                 window_size=7,
                 qkv_bias=True,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 downsample=None,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN'),
                 init_cfg=None,
                 with_cp=True):
        super().__init__()

        self.init_cfg = init_cfg

        drop_path_rate = drop_path_rate if isinstance(
            drop_path_rate,
            list) else [deepcopy(drop_path_rate) for _ in range(depth)]

        self.blocks = ModuleList()
        for i in range(depth):
            block = SwinBlock(
                embed_dims=embed_dims,
                num_heads=num_heads,
                feedforward_channels=feedforward_channels,
                window_size=window_size,
                shift=False if i % 2 == 0 else True,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop_rate=drop_rate,
                attn_drop_rate=attn_drop_rate,
                drop_path_rate=drop_path_rate[i],
                act_cfg=act_cfg,
                norm_cfg=norm_cfg,
                init_cfg=None)
            self.blocks.append(block)

        self.downsample = downsample
        self.with_cp = with_cp

    def forward(self, x, hw_shape):
        for block in self.blocks:
            if self.with_cp:
                x = checkpoint.checkpoint(block, x, hw_shape)
            else:
                x = block(x, hw_shape)

        if self.downsample:
            x_down, down_hw_shape = self.downsample(x, hw_shape)
            return x_down, down_hw_shape, x, hw_shape
        else:
            return x, hw_shape, x, hw_shape


@BACKBONES.register_module()
class SwinTransformer(BaseModule):
    """ Swin Transformer
    A PyTorch implement of : `Swin Transformer:
    Hierarchical Vision Transformer using Shifted Windows`  -
        https://arxiv.org/abs/2103.14030

    Inspiration from
    https://github.com/microsoft/Swin-Transformer

    Args:
        pretrain_img_size (int | tuple[int]): The size of input image when
            pretrain. Defaults: 224.
        in_channels (int): The num of input channels.
            Defaults: 3.
        embed_dims (int): The feature dimension. Default: 96.
        patch_size (int | tuple[int]): Patch size. Default: 4.
        window_size (int): Window size. Default: 7.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
            Default: 4.
        depths (tuple[int]): Depths of each Swin Transformer stage.
            Default: (2, 2, 6, 2).
        num_heads (tuple[int]): Parallel attention heads of each Swin
            Transformer stage. Default: (3, 6, 12, 24).
        strides (tuple[int]): The patch merging or patch embedding stride of
            each Swin Transformer stage. (In swin, we set kernel size equal to
            stride.) Default: (4, 2, 2, 2).
        out_indices (tuple[int]): Output from which stages.
            Default: (0, 1, 2, 3).
        qkv_bias (bool, optional): If True, add a learnable bias to query, key,
            value. Default: True
        qk_scale (float | None, optional): Override default qk scale of
            head_dim ** -0.5 if set. Default: None.
        patch_norm (bool): If add a norm layer for patch embed and patch
            merging. Default: True.
        drop_rate (float): Dropout rate. Defaults: 0.
        attn_drop_rate (float): Attention dropout rate. Default: 0.
        drop_path_rate (float): Stochastic depth rate. Defaults: 0.1.
        use_abs_pos_embed (bool): If True, add absolute position embedding to
            the patch embedding. Defaults: False.
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='LN').
        norm_cfg (dict): Config dict for normalization layer at
            output of backone. Defaults: dict(type='LN').
        pretrain_style (str): Choose to use official or mmcls pretrain weights.
            Default: official.
        pretrained (str, optional): model pretrained path. Default: None.
        init_cfg (dict, optional): The Config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 pretrain_img_size=224,
                 in_channels=3,
                 embed_dims=96,
                 patch_size=4,
                 window_size=7,
                 mlp_ratio=4,
                 depths=(2, 2, 6, 2),
                 num_heads=(3, 6, 12, 24),
                 strides=(4, 2, 2, 2),
                 out_indices=(0, 1, 2, 3),
                 qkv_bias=True,
                 qk_scale=None,
                 patch_norm=True,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.1,
                 use_abs_pos_embed=False,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN'),
                 pretrain_style='official',
                 pretrained=None,
                 init_cfg=None,
                 with_cp=True,
                 return_stereo_feat=False,
                 output_missing_index_as_none=False,
                 frozen_stages=-1):
        super(SwinTransformer, self).__init__()

        if isinstance(pretrain_img_size, int):
            pretrain_img_size = to_2tuple(pretrain_img_size)
        elif isinstance(pretrain_img_size, tuple):
            if len(pretrain_img_size) == 1:
                pretrain_img_size = to_2tuple(pretrain_img_size[0])
            assert len(pretrain_img_size) == 2, \
                f'The size of image should have length 1 or 2, ' \
                f'but got {len(pretrain_img_size)}'

        assert pretrain_style in ['official', 'mmcls'], 'We only support load '
        'official ckpt and mmcls ckpt.'

        if isinstance(pretrained, str) or pretrained is None:
            warnings.warn('DeprecationWarning: pretrained is a deprecated, '
                          'please use "init_cfg" instead')
        else:
            raise TypeError('pretrained must be a str or None')

        num_layers = len(depths)
        self.out_indices = out_indices
        self.use_abs_pos_embed = use_abs_pos_embed
        self.pretrain_style = pretrain_style
        self.pretrained = pretrained
        self.init_cfg = init_cfg

        self.frozen_stages = frozen_stages

        assert strides[0] == patch_size, 'Use non-overlapping patch embed.'

        self.patch_embed = PatchEmbed(
            in_channels=in_channels,
            embed_dims=embed_dims,
            conv_type='Conv2d',
            kernel_size=patch_size,
            stride=strides[0],
            pad_to_patch_size=True,
            norm_cfg=norm_cfg if patch_norm else None,
            init_cfg=None)

        if self.use_abs_pos_embed:
            patch_row = pretrain_img_size[0] // patch_size
            patch_col = pretrain_img_size[1] // patch_size
            num_patches = patch_row * patch_col
            self.absolute_pos_embed = nn.Parameter(
                torch.zeros((1, num_patches, embed_dims)))

        self.drop_after_pos = nn.Dropout(p=drop_rate)

        # stochastic depth
        total_depth = sum(depths)
        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, total_depth)
        ]  # stochastic depth decay rule

        self.stages = ModuleList()
        in_channels = embed_dims
        for i in range(num_layers):
            if i < num_layers - 1:
                downsample = PatchMerging(
                    in_channels=in_channels,
                    out_channels=2 * in_channels,
                    stride=strides[i + 1],
                    norm_cfg=norm_cfg if patch_norm else None,
                    init_cfg=None)
            else:
                downsample = None

            stage = SwinBlockSequence(
                embed_dims=in_channels,
                num_heads=num_heads[i],
                feedforward_channels=mlp_ratio * in_channels,
                depth=depths[i],
                window_size=window_size,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop_rate=drop_rate,
                attn_drop_rate=attn_drop_rate,
                drop_path_rate=dpr[:depths[i]],
                downsample=downsample,
                act_cfg=act_cfg,
                norm_cfg=norm_cfg,
                init_cfg=None,
                with_cp=with_cp)
            self.stages.append(stage)

            dpr = dpr[depths[i]:]
            if downsample:
                in_channels = downsample.out_channels

        self.num_features = [int(embed_dims * 2**i) for i in range(num_layers)]
        # Add a norm layer for each output
        for i in out_indices:
            layer = build_norm_layer(norm_cfg, self.num_features[i])[1]
            layer_name = f'norm{i}'
            self.add_module(layer_name, layer)
        self.output_missing_index_as_none = output_missing_index_as_none

        self._freeze_stages()
        self.return_stereo_feat = return_stereo_feat

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            self.patch_embed.eval()
            for param in self.patch_embed.parameters():
                param.requires_grad = False

        if self.frozen_stages >= 1 and self.use_abs_pos_embed:
            self.absolute_pos_embed.requires_grad = False

        if self.frozen_stages >= 2:
            self.drop_after_pos.eval()
            for i in range(0, self.frozen_stages - 1):
                m = self.stages[i]
                m.eval()
                for param in m.parameters():
                    param.requires_grad = False

    def init_weights(self):
        if self.pretrained is None:
            super().init_weights()
            if self.use_abs_pos_embed:
                trunc_normal_init(self.absolute_pos_embed, std=0.02)
            for m in self.modules():
                if isinstance(m, Linear):
                    trunc_normal_init(m.weight, std=.02)
                    if m.bias is not None:
                        constant_init(m.bias, 0)
                elif isinstance(m, LayerNorm):
                    constant_init(m.bias, 0)
                    constant_init(m.weight, 1.0)
        elif isinstance(self.pretrained, str):
            logger = get_root_logger()
            ckpt = _load_checkpoint(
                self.pretrained, logger=logger, map_location='cpu')
            if 'state_dict' in ckpt:
                state_dict = ckpt['state_dict']
            elif 'model' in ckpt:
                state_dict = ckpt['model']
            else:
                state_dict = ckpt

            if self.pretrain_style == 'official':
                state_dict = swin_convert(state_dict)

            # strip prefix of state_dict
            if list(state_dict.keys())[0].startswith('module.'):
                state_dict = {k[7:]: v for k, v in state_dict.items()}
            # if list(state_dict.keys())[0].startswith('backbone.'):
            #     state_dict = {k[9:]: v for k, v in state_dict.items()}
            # reshape absolute position embedding
            if state_dict.get('absolute_pos_embed') is not None:
                absolute_pos_embed = state_dict['absolute_pos_embed']
                N1, L, C1 = absolute_pos_embed.size()
                N2, C2, H, W = self.absolute_pos_embed.size()
                if N1 != N2 or C1 != C2 or L != H * W:
                    logger.warning('Error in loading absolute_pos_embed, pass')
                else:
                    state_dict['absolute_pos_embed'] = absolute_pos_embed.view(
                        N2, H, W, C2).permute(0, 3, 1, 2).contiguous()

            # interpolate position bias table if needed
            relative_position_bias_table_keys = [
                k for k in state_dict.keys()
                if 'relative_position_bias_table' in k
            ]
            for table_key in relative_position_bias_table_keys:
                table_pretrained = state_dict[table_key]
                table_current = self.state_dict()[table_key]
                L1, nH1 = table_pretrained.size()
                L2, nH2 = table_current.size()
                if nH1 != nH2:
                    logger.warning(f'Error in loading {table_key}, pass')
                else:
                    if L1 != L2:
                        S1 = int(L1**0.5)
                        S2 = int(L2**0.5)
                        table_pretrained_resized = resize(
                            table_pretrained.permute(1, 0).reshape(
                                1, nH1, S1, S1),
                            size=(S2, S2),
                            mode='bicubic')
                        state_dict[table_key] = table_pretrained_resized.view(
                            nH2, L2).permute(1, 0).contiguous()

            # load state_dict
            self.load_state_dict(state_dict, False)

    def forward(self, x):
        x = self.patch_embed(x)

        hw_shape = (self.patch_embed.DH, self.patch_embed.DW)
        if self.use_abs_pos_embed:
            x = x + self.absolute_pos_embed
        x = self.drop_after_pos(x)

        outs = []
        for i, stage in enumerate(self.stages):
            x, hw_shape, out, out_hw_shape = stage(x, hw_shape)
            if i == 0 and self.return_stereo_feat:
                out = out.view(-1, *out_hw_shape,
                               self.num_features[i]).permute(0, 3, 1,
                                                             2).contiguous()
                outs.append(out)
            if i in self.out_indices:
                norm_layer = getattr(self, f'norm{i}')
                out = norm_layer(out)
                out = out.view(-1, *out_hw_shape,
                               self.num_features[i]).permute(0, 3, 1,
                                                             2).contiguous()
                outs.append(out)
            elif self.output_missing_index_as_none:
                outs.append(None)
        return outs

    def train(self, mode=True):
        """Convert the model into training mode while keep normalization layer
        freezed."""
        super(SwinTransformer, self).train(mode)
        self._freeze_stages()