resnet.py 6.5 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright (c) Phigent Robotics. All rights reserved.

import torch.utils.checkpoint as checkpoint
from torch import nn
import torch
from mmcv.cnn.bricks.conv_module import ConvModule
from mmdet.models.backbones.resnet import BasicBlock, Bottleneck
from mmdet3d.models import BACKBONES


@BACKBONES.register_module()
class CustomResNet(nn.Module):
    def __init__(
            self,
            numC_input,
            num_layer=[2, 2, 2],
            num_channels=None,
            stride=[2, 2, 2],
            backbone_output_ids=None,
            norm_cfg=dict(type='BN'),
            with_cp=False,
            block_type='Basic',
    ):
        super(CustomResNet, self).__init__()
        # build backbone
        assert len(num_layer) == len(stride)
        num_channels = [numC_input*2**(i+1) for i in range(len(num_layer))] \
            if num_channels is None else num_channels
        self.backbone_output_ids = range(len(num_layer)) \
            if backbone_output_ids is None else backbone_output_ids

        layers = []
        if block_type == 'BottleNeck':
            curr_numC = numC_input
            for i in range(len(num_layer)):
                # 在第一个block中对输入进行downsample
                layer = [Bottleneck(inplanes=curr_numC, planes=num_channels[i]//4, stride=stride[i],
                                    downsample=nn.Conv2d(curr_numC, num_channels[i], 3, stride[i], 1),
                                    norm_cfg=norm_cfg)]
                curr_numC = num_channels[i]
                layer.extend([Bottleneck(inplanes=curr_numC, planes=num_channels[i]//4, stride=1,
                                         downsample=None, norm_cfg=norm_cfg) for _ in range(num_layer[i] - 1)])
                layers.append(nn.Sequential(*layer))
        elif block_type == 'Basic':
            curr_numC = numC_input
            for i in range(len(num_layer)):
                # 在第一个block中对输入进行downsample
                layer = [BasicBlock(inplanes=curr_numC, planes=num_channels[i], stride=stride[i],
                                    downsample=nn.Conv2d(curr_numC, num_channels[i], 3, stride[i], 1),
                                    norm_cfg=norm_cfg)]
                curr_numC = num_channels[i]
                layer.extend([BasicBlock(inplanes=curr_numC, planes=num_channels[i], stride=1,
                                          downsample=None, norm_cfg=norm_cfg) for _ in range(num_layer[i] - 1)])
                layers.append(nn.Sequential(*layer))
        else:
            assert False

        self.layers = nn.Sequential(*layers)
        self.with_cp = with_cp

    #@torch.compile
    def forward(self, x):
        """
        Args:
            x: (B, C=64, Dy, Dx)
        Returns:
            feats: List[
                (B, 2*C, Dy/2, Dx/2),
                (B, 4*C, Dy/4, Dx/4),
                (B, 8*C, Dy/8, Dx/8),
            ]
        """
        feats = []
        x_tmp = x
        for lid, layer in enumerate(self.layers):
            if self.with_cp:
                x_tmp = checkpoint.checkpoint(layer, x_tmp)
            else:
                x_tmp = layer(x_tmp)
            if lid in self.backbone_output_ids:
                feats.append(x_tmp)
        return feats


class BasicBlock3D(nn.Module):
    def __init__(self,
                 channels_in, channels_out, stride=1, downsample=None):
        super(BasicBlock3D, self).__init__()
        self.conv1 = ConvModule(
            channels_in,
            channels_out,
            kernel_size=3,
            stride=stride,
            padding=1,
            bias=False,
            conv_cfg=dict(type='Conv3d'),
            norm_cfg=dict(type='BN3d', ),
            act_cfg=dict(type='ReLU',inplace=True))
        self.conv2 = ConvModule(
            channels_out,
            channels_out,
            kernel_size=3,
            stride=1,
            padding=1,
            bias=False,
            conv_cfg=dict(type='Conv3d'),
            norm_cfg=dict(type='BN3d', ),
            act_cfg=None)
        self.downsample = downsample
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        if self.downsample is not None:
            identity = self.downsample(x)
        else:
            identity = x
        x = self.conv1(x)
        x = self.conv2(x)
        x = x + identity
        return self.relu(x)


@BACKBONES.register_module()
class CustomResNet3D(nn.Module):
    def __init__(
            self,
            numC_input,
            num_layer=[2, 2, 2],
            num_channels=None,
            stride=[2, 2, 2],
            backbone_output_ids=None,
            with_cp=False,
    ):
        super(CustomResNet3D, self).__init__()
        # build backbone
        assert len(num_layer) == len(stride)
        num_channels = [numC_input * 2 ** (i + 1) for i in range(len(num_layer))] \
            if num_channels is None else num_channels
        self.backbone_output_ids = range(len(num_layer)) \
            if backbone_output_ids is None else backbone_output_ids
        layers = []
        curr_numC = numC_input
        for i in range(len(num_layer)):
            layer = [
                BasicBlock3D(
                    curr_numC,
                    num_channels[i],
                    stride=stride[i],
                    downsample=ConvModule(
                        curr_numC,
                        num_channels[i],
                        kernel_size=3,
                        stride=stride[i],
                        padding=1,
                        bias=False,
                        conv_cfg=dict(type='Conv3d'),
                        norm_cfg=dict(type='BN3d', ),
                        act_cfg=None))
            ]
            curr_numC = num_channels[i]
            layer.extend([
                BasicBlock3D(curr_numC, curr_numC)
                for _ in range(num_layer[i] - 1)
            ])
            layers.append(nn.Sequential(*layer))
        self.layers = nn.Sequential(*layers)

        self.with_cp = with_cp

    def forward(self, x):
        """
        Args:
            x: (B, C, Dz, Dy, Dx)
        Returns:
            feats: List[
                (B, C, Dz, Dy, Dx),
                (B, 2C, Dz/2, Dy/2, Dx/2),
                (B, 4C, Dz/4, Dy/4, Dx/4),
            ]
        """
        feats = []
        x_tmp = x
        for lid, layer in enumerate(self.layers):
            if self.with_cp:
                x_tmp = checkpoint.checkpoint(layer, x_tmp)
            else:
                x_tmp = layer(x_tmp)
            if lid in self.backbone_output_ids:
                feats.append(x_tmp)
        return feats