nuscenes_dataset_bevdet.py 29 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
# Copyright (c) OpenMMLab. All rights reserved.
import tempfile
from os import path as osp

import mmcv
import numpy as np
import pyquaternion
from nuscenes.utils.data_classes import Box as NuScenesBox

from mmdet3d.core import show_result
from mmdet3d.core.bbox import Box3DMode, Coord3DMode, LiDARInstance3DBoxes
from mmdet3d.datasets import DATASETS
from mmdet3d.datasets.custom_3d import Custom3DDataset
from mmdet3d.datasets.pipelines import Compose


@DATASETS.register_module()
class NuScenesDatasetBEVDet(Custom3DDataset):
    r"""NuScenes Dataset.

    This class serves as the API for experiments on the NuScenes Dataset.

    Please refer to `NuScenes Dataset <https://www.nuscenes.org/download>`_
    for data downloading.

    Args:
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        data_root (str): Path of dataset root.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        load_interval (int, optional): Interval of loading the dataset. It is
            used to uniformly sample the dataset. Defaults to 1.
        with_velocity (bool, optional): Whether include velocity prediction
            into the experiments. Defaults to True.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'LiDAR' in this dataset. Available options includes.
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
        eval_version (bool, optional): Configuration version of evaluation.
            Defaults to  'detection_cvpr_2019'.
        use_valid_flag (bool, optional): Whether to use `use_valid_flag` key
            in the info file as mask to filter gt_boxes and gt_names.
            Defaults to False.
        img_info_prototype (str, optional): Type of img information.
            Based on 'img_info_prototype', the dataset will prepare the image
            data info in the type of 'mmcv' for official image infos,
            'bevdet' for BEVDet, and 'bevdet4d' for BEVDet4D.
            Defaults to 'mmcv'.
        multi_adj_frame_id_cfg (tuple[int]): Define the selected index of
            reference adjcacent frames.
        ego_cam (str): Specify the ego coordinate relative to a specified
            camera by its name defined in NuScenes.
            Defaults to None, which use the mean of all cameras.
    """
    NameMapping = {
        'movable_object.barrier': 'barrier',
        'vehicle.bicycle': 'bicycle',
        'vehicle.bus.bendy': 'bus',
        'vehicle.bus.rigid': 'bus',
        'vehicle.car': 'car',
        'vehicle.construction': 'construction_vehicle',
        'vehicle.motorcycle': 'motorcycle',
        'human.pedestrian.adult': 'pedestrian',
        'human.pedestrian.child': 'pedestrian',
        'human.pedestrian.construction_worker': 'pedestrian',
        'human.pedestrian.police_officer': 'pedestrian',
        'movable_object.trafficcone': 'traffic_cone',
        'vehicle.trailer': 'trailer',
        'vehicle.truck': 'truck'
    }
    DefaultAttribute = {
        'car': 'vehicle.parked',
        'pedestrian': 'pedestrian.moving',
        'trailer': 'vehicle.parked',
        'truck': 'vehicle.parked',
        'bus': 'vehicle.moving',
        'motorcycle': 'cycle.without_rider',
        'construction_vehicle': 'vehicle.parked',
        'bicycle': 'cycle.without_rider',
        'barrier': '',
        'traffic_cone': '',
    }
    AttrMapping = {
        'cycle.with_rider': 0,
        'cycle.without_rider': 1,
        'pedestrian.moving': 2,
        'pedestrian.standing': 3,
        'pedestrian.sitting_lying_down': 4,
        'vehicle.moving': 5,
        'vehicle.parked': 6,
        'vehicle.stopped': 7,
    }
    AttrMapping_rev = [
        'cycle.with_rider',
        'cycle.without_rider',
        'pedestrian.moving',
        'pedestrian.standing',
        'pedestrian.sitting_lying_down',
        'vehicle.moving',
        'vehicle.parked',
        'vehicle.stopped',
    ]
    # https://github.com/nutonomy/nuscenes-devkit/blob/57889ff20678577025326cfc24e57424a829be0a/python-sdk/nuscenes/eval/detection/evaluate.py#L222 # noqa
    ErrNameMapping = {
        'trans_err': 'mATE',
        'scale_err': 'mASE',
        'orient_err': 'mAOE',
        'vel_err': 'mAVE',
        'attr_err': 'mAAE'
    }
    CLASSES = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle',
               'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
               'barrier')

    def __init__(self,
                 ann_file,
                 pipeline=None,
                 data_root=None,
                 classes=None,
                 load_interval=1,
                 with_velocity=True,
                 modality=None,
                 box_type_3d='LiDAR',
                 filter_empty_gt=True,
                 test_mode=False,
                 eval_version='detection_cvpr_2019',
                 use_valid_flag=False,
                 img_info_prototype='mmcv',
                 multi_adj_frame_id_cfg=None,
                 ego_cam='CAM_FRONT',
                 stereo=False):
        self.load_interval = load_interval
        self.use_valid_flag = use_valid_flag
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
            test_mode=test_mode)

        self.with_velocity = with_velocity
        self.eval_version = eval_version
        from nuscenes.eval.detection.config import config_factory
        self.eval_detection_configs = config_factory(self.eval_version)
        if self.modality is None:
            self.modality = dict(
                use_camera=False,
                use_lidar=True,
                use_radar=False,
                use_map=False,
                use_external=False,
            )

        self.img_info_prototype = img_info_prototype
        self.multi_adj_frame_id_cfg = multi_adj_frame_id_cfg
        self.ego_cam = ego_cam
        self.stereo = stereo

    def get_cat_ids(self, idx):
        """Get category distribution of single scene.

        Args:
            idx (int): Index of the data_info.

        Returns:
            dict[list]: for each category, if the current scene
                contains such boxes, store a list containing idx,
                otherwise, store empty list.
        """
        info = self.data_infos[idx]
        if self.use_valid_flag:
            mask = info['valid_flag']
            gt_names = set(info['gt_names'][mask])
        else:
            gt_names = set(info['gt_names'])

        cat_ids = []
        for name in gt_names:
            if name in self.CLASSES:
                cat_ids.append(self.cat2id[name])
        return cat_ids

    def load_annotations(self, ann_file):
        """Load annotations from ann_file.

        Args:
            ann_file (str): Path of the annotation file.

        Returns:
            list[dict]: List of annotations sorted by timestamps.
        """
        data = mmcv.load(ann_file, file_format='pkl')
        data_infos = list(sorted(data['infos'], key=lambda e: e['timestamp']))
        data_infos = data_infos[::self.load_interval]
        self.metadata = data['metadata']
        self.version = self.metadata['version']
        return data_infos

    def get_data_info(self, index):
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
            dict: Data information that will be passed to the data
                preprocessing pipelines. It includes the following keys:

                - sample_idx (str): Sample index.
                - pts_filename (str): Filename of point clouds.
                - sweeps (list[dict]): Infos of sweeps.
                - timestamp (float): Sample timestamp.
                - img_filename (str, optional): Image filename.
                - lidar2img (list[np.ndarray], optional): Transformations
                    from lidar to different cameras.
                - ann_info (dict): Annotation info.
        """
        info = self.data_infos[index]
        # standard protocol modified from SECOND.Pytorch
        input_dict = dict(
            sample_idx=info['token'],
            pts_filename=info['lidar_path'],
            sweeps=info['sweeps'],
            timestamp=info['timestamp'] / 1e6,
        )
        if 'ann_infos' in info:
            input_dict['ann_infos'] = info['ann_infos']
        if self.modality['use_camera']:
            if self.img_info_prototype == 'mmcv':
                image_paths = []
                lidar2img_rts = []
                for cam_type, cam_info in info['cams'].items():
                    image_paths.append(cam_info['data_path'])
                    # obtain lidar to image transformation matrix
                    lidar2cam_r = np.linalg.inv(
                        cam_info['sensor2lidar_rotation'])
                    lidar2cam_t = cam_info[
                        'sensor2lidar_translation'] @ lidar2cam_r.T
                    lidar2cam_rt = np.eye(4)
                    lidar2cam_rt[:3, :3] = lidar2cam_r.T
                    lidar2cam_rt[3, :3] = -lidar2cam_t
                    intrinsic = cam_info['cam_intrinsic']
                    viewpad = np.eye(4)
                    viewpad[:intrinsic.shape[0], :intrinsic.
                            shape[1]] = intrinsic
                    lidar2img_rt = (viewpad @ lidar2cam_rt.T)
                    lidar2img_rts.append(lidar2img_rt)

                input_dict.update(
                    dict(
                        img_filename=image_paths,
                        lidar2img=lidar2img_rts,
                    ))

                if not self.test_mode:
                    annos = self.get_ann_info(index)
                    input_dict['ann_info'] = annos
            else:
                assert 'bevdet' in self.img_info_prototype
                input_dict.update(dict(curr=info))
                if '4d' in self.img_info_prototype:     # 需要再读取历史帧的信息
                    info_adj_list = self.get_adj_info(info, index)
                    input_dict.update(dict(adjacent=info_adj_list))
        return input_dict

    def get_adj_info(self, info, index):
        info_adj_list = []
        adj_id_list = list(range(*self.multi_adj_frame_id_cfg))     # bevdet4d: [1, ]  只利用前一帧.
        if self.stereo:
            assert self.multi_adj_frame_id_cfg[0] == 1
            assert self.multi_adj_frame_id_cfg[2] == 1
            # 如果使用stereo4d, 不仅当前帧需要利用前一帧图像计算stereo depth, 前一帧也需要利用它的前一帧计算stereo depth.
            # 因此, 我们需要额外读取一帧(也就是前一帧的前一帧).
            adj_id_list.append(self.multi_adj_frame_id_cfg[1])
        for select_id in adj_id_list:
            select_id = max(index - select_id, 0)
            if not self.data_infos[select_id]['scene_token'] == info[
                    'scene_token']:
                info_adj_list.append(info)
            else:
                info_adj_list.append(self.data_infos[select_id])
        return info_adj_list

    def get_ann_info(self, index):
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: Annotation information consists of the following keys:

                - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`):
                    3D ground truth bboxes
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - gt_names (list[str]): Class names of ground truths.
        """
        info = self.data_infos[index]
        # filter out bbox containing no points
        if self.use_valid_flag:
            mask = info['valid_flag']
        else:
            mask = info['num_lidar_pts'] > 0
        gt_bboxes_3d = info['gt_boxes'][mask]
        gt_names_3d = info['gt_names'][mask]
        gt_labels_3d = []
        for cat in gt_names_3d:
            if cat in self.CLASSES:
                gt_labels_3d.append(self.CLASSES.index(cat))
            else:
                gt_labels_3d.append(-1)
        gt_labels_3d = np.array(gt_labels_3d)

        if self.with_velocity:
            gt_velocity = info['gt_velocity'][mask]
            nan_mask = np.isnan(gt_velocity[:, 0])
            gt_velocity[nan_mask] = [0.0, 0.0]
            gt_bboxes_3d = np.concatenate([gt_bboxes_3d, gt_velocity], axis=-1)

        # the nuscenes box center is [0.5, 0.5, 0.5], we change it to be
        # the same as KITTI (0.5, 0.5, 0)
        gt_bboxes_3d = LiDARInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
            gt_labels_3d=gt_labels_3d,
            gt_names=gt_names_3d)
        return anns_results

    def _format_bbox(self, results, jsonfile_prefix=None):
        """Convert the results to the standard format.

        Args:
            results (list[dict]): Testing results of the dataset.
            jsonfile_prefix (str): The prefix of the output jsonfile.
                You can specify the output directory/filename by
                modifying the jsonfile_prefix. Default: None.

        Returns:
            str: Path of the output json file.
        """
        nusc_annos = {}
        mapped_class_names = self.CLASSES

        print('Start to convert detection format...')
        for sample_id, det in enumerate(mmcv.track_iter_progress(results)):
            boxes = det['boxes_3d'].tensor.numpy()
            scores = det['scores_3d'].numpy()
            labels = det['labels_3d'].numpy()
            sample_token = self.data_infos[sample_id]['token']

            trans = self.data_infos[sample_id]['cams'][
                self.ego_cam]['ego2global_translation']
            rot = self.data_infos[sample_id]['cams'][
                self.ego_cam]['ego2global_rotation']
            rot = pyquaternion.Quaternion(rot)
            annos = list()
            for i, box in enumerate(boxes):
                name = mapped_class_names[labels[i]]
                center = box[:3]
                wlh = box[[4, 3, 5]]
                box_yaw = box[6]
                box_vel = box[7:].tolist()
                box_vel.append(0)
                quat = pyquaternion.Quaternion(axis=[0, 0, 1], radians=box_yaw)
                nusc_box = NuScenesBox(center, wlh, quat, velocity=box_vel)
                nusc_box.rotate(rot)
                nusc_box.translate(trans)
                if np.sqrt(nusc_box.velocity[0]**2 +
                           nusc_box.velocity[1]**2) > 0.2:
                    if name in [
                            'car',
                            'construction_vehicle',
                            'bus',
                            'truck',
                            'trailer',
                    ]:
                        attr = 'vehicle.moving'
                    elif name in ['bicycle', 'motorcycle']:
                        attr = 'cycle.with_rider'
                    else:
                        attr = self.DefaultAttribute[name]
                else:
                    if name in ['pedestrian']:
                        attr = 'pedestrian.standing'
                    elif name in ['bus']:
                        attr = 'vehicle.stopped'
                    else:
                        attr = self.DefaultAttribute[name]
                nusc_anno = dict(
                    sample_token=sample_token,
                    translation=nusc_box.center.tolist(),
                    size=nusc_box.wlh.tolist(),
                    rotation=nusc_box.orientation.elements.tolist(),
                    velocity=nusc_box.velocity[:2],
                    detection_name=name,
                    detection_score=float(scores[i]),
                    attribute_name=attr,
                )
                annos.append(nusc_anno)
            # other views results of the same frame should be concatenated
            if sample_token in nusc_annos:
                nusc_annos[sample_token].extend(annos)
            else:
                nusc_annos[sample_token] = annos
        nusc_submissions = {
            'meta': self.modality,
            'results': nusc_annos,
        }

        mmcv.mkdir_or_exist(jsonfile_prefix)
        res_path = osp.join(jsonfile_prefix, 'results_nusc.json')
        print('Results writes to', res_path)
        mmcv.dump(nusc_submissions, res_path)
        return res_path

    def _evaluate_single(self,
                         result_path,
                         logger=None,
                         metric='bbox',
                         result_name='pts_bbox'):
        """Evaluation for a single model in nuScenes protocol.

        Args:
            result_path (str): Path of the result file.
            logger (logging.Logger | str, optional): Logger used for printing
                related information during evaluation. Default: None.
            metric (str, optional): Metric name used for evaluation.
                Default: 'bbox'.
            result_name (str, optional): Result name in the metric prefix.
                Default: 'pts_bbox'.

        Returns:
            dict: Dictionary of evaluation details.
        """
        from nuscenes import NuScenes
        from nuscenes.eval.detection.evaluate import NuScenesEval

        output_dir = osp.join(*osp.split(result_path)[:-1])
        nusc = NuScenes(
            version=self.version, dataroot=self.data_root, verbose=False)
        eval_set_map = {
            'v1.0-mini': 'mini_val',
            'v1.0-trainval': 'val',
        }
        nusc_eval = NuScenesEval(
            nusc,
            config=self.eval_detection_configs,
            result_path=result_path,
            eval_set=eval_set_map[self.version],
            output_dir=output_dir,
            verbose=False)
        nusc_eval.main(render_curves=False)

        # record metrics
        metrics = mmcv.load(osp.join(output_dir, 'metrics_summary.json'))
        detail = dict()
        metric_prefix = f'{result_name}_NuScenes'
        for name in self.CLASSES:
            for k, v in metrics['label_aps'][name].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}_AP_dist_{}'.format(metric_prefix, name, k)] = val
            for k, v in metrics['label_tp_errors'][name].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}_{}'.format(metric_prefix, name, k)] = val
            for k, v in metrics['tp_errors'].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}'.format(metric_prefix,
                                      self.ErrNameMapping[k])] = val

        detail['{}/NDS'.format(metric_prefix)] = metrics['nd_score']
        detail['{}/mAP'.format(metric_prefix)] = metrics['mean_ap']
        return detail

    def format_results(self, results, jsonfile_prefix=None):
        """Format the results to json (standard format for COCO evaluation).

        Args:
            results (list[dict]): Testing results of the dataset.
            jsonfile_prefix (str): The prefix of json files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
            tuple: Returns (result_files, tmp_dir), where `result_files` is a
                dict containing the json filepaths, `tmp_dir` is the temporal
                directory created for saving json files when
                `jsonfile_prefix` is not specified.
        """
        assert isinstance(results, list), 'results must be a list'
        assert len(results) == len(self), (
            'The length of results is not equal to the dataset len: {} != {}'.
            format(len(results), len(self)))

        if jsonfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            jsonfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None

        # currently the output prediction results could be in two formats
        # 1. list of dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...)
        # 2. list of dict('pts_bbox' or 'img_bbox':
        #     dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...))
        # this is a workaround to enable evaluation of both formats on nuScenes
        # refer to https://github.com/open-mmlab/mmdetection3d/issues/449
        if not ('pts_bbox' in results[0] or 'img_bbox' in results[0]):
            result_files = self._format_bbox(results, jsonfile_prefix)
        else:
            # should take the inner dict out of 'pts_bbox' or 'img_bbox' dict
            result_files = dict()
            for name in results[0]:
                print(f'\nFormating bboxes of {name}')
                results_ = [out[name] for out in results]
                # List[dict0, dict1, ...]
                # dict: {
                #   'boxes_3d': (N, 9)
                #   'scores_3d': (N, )
                #   'labels_3d': (N, )
                # }
                tmp_file_ = osp.join(jsonfile_prefix, name)
                result_files.update(
                    {name: self._format_bbox(results_, tmp_file_)})
        return result_files, tmp_dir

    def evaluate(self,
                 results,
                 metric='bbox',
                 logger=None,
                 jsonfile_prefix=None,
                 result_names=['pts_bbox'],
                 show=False,
                 out_dir=None,
                 pipeline=None):
        """Evaluation in nuScenes protocol.

        Args:
            results (list[dict]): Testing results of the dataset.
            metric (str | list[str], optional): Metrics to be evaluated.
                Default: 'bbox'.
            logger (logging.Logger | str, optional): Logger used for printing
                related information during evaluation. Default: None.
            jsonfile_prefix (str, optional): The prefix of json files including
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
            show (bool, optional): Whether to visualize.
                Default: False.
            out_dir (str, optional): Path to save the visualization results.
                Default: None.
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.

        Returns:
            dict[str, float]: Results of each evaluation metric.
        """
        result_files, tmp_dir = self.format_results(results, jsonfile_prefix)

        if isinstance(result_files, dict):
            results_dict = dict()
            for name in result_names:
                print('Evaluating bboxes of {}'.format(name))
                ret_dict = self._evaluate_single(result_files[name])
            results_dict.update(ret_dict)
        elif isinstance(result_files, str):
            results_dict = self._evaluate_single(result_files)

        if tmp_dir is not None:
            tmp_dir.cleanup()

        if show or out_dir:
            self.show(results, out_dir, show=show, pipeline=pipeline)
        return results_dict

    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='LIDAR',
                load_dim=5,
                use_dim=5,
                file_client_args=dict(backend='disk')),
            dict(
                type='LoadPointsFromMultiSweeps',
                sweeps_num=10,
                file_client_args=dict(backend='disk')),
            dict(
                type='DefaultFormatBundle3D',
                class_names=self.CLASSES,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ]
        return Compose(pipeline)

    def show(self, results, out_dir, show=False, pipeline=None):
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
            show (bool): Whether to visualize the results online.
                Default: False.
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
        """
        assert out_dir is not None, 'Expect out_dir, got none.'
        pipeline = self._get_pipeline(pipeline)
        for i, result in enumerate(results):
            if 'pts_bbox' in result.keys():
                result = result['pts_bbox']
            data_info = self.data_infos[i]
            pts_path = data_info['lidar_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
            points = self._extract_data(i, pipeline, 'points').numpy()
            # for now we convert points into depth mode
            points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR,
                                               Coord3DMode.DEPTH)
            inds = result['scores_3d'] > 0.1
            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
            show_gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR,
                                               Box3DMode.DEPTH)
            pred_bboxes = result['boxes_3d'][inds].tensor.numpy()
            show_pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR,
                                                 Box3DMode.DEPTH)
            show_result(points, show_gt_bboxes, show_pred_bboxes, out_dir,
                        file_name, show)


def output_to_nusc_box(detection, with_velocity=True):
    """Convert the output to the box class in the nuScenes.

    Args:
        detection (dict): Detection results.

            - boxes_3d (:obj:`BaseInstance3DBoxes`): Detection bbox.
            - scores_3d (torch.Tensor): Detection scores.
            - labels_3d (torch.Tensor): Predicted box labels.

    Returns:
        list[:obj:`NuScenesBox`]: List of standard NuScenesBoxes.
    """
    box3d = detection['boxes_3d']
    scores = detection['scores_3d'].numpy()
    labels = detection['labels_3d'].numpy()

    box_gravity_center = box3d.gravity_center.numpy()
    box_dims = box3d.dims.numpy()
    box_yaw = box3d.yaw.numpy()

    # our LiDAR coordinate system -> nuScenes box coordinate system
    nus_box_dims = box_dims[:, [1, 0, 2]]

    box_list = []
    for i in range(len(box3d)):
        quat = pyquaternion.Quaternion(axis=[0, 0, 1], radians=box_yaw[i])
        if with_velocity:
            velocity = (*box3d.tensor[i, 7:9], 0.0)
        else:
            velocity = (0, 0, 0)
        # velo_val = np.linalg.norm(box3d[i, 7:9])
        # velo_ori = box3d[i, 6]
        # velocity = (
        # velo_val * np.cos(velo_ori), velo_val * np.sin(velo_ori), 0.0)
        box = NuScenesBox(
            box_gravity_center[i],
            nus_box_dims[i],
            quat,
            label=labels[i],
            score=scores[i],
            velocity=velocity)
        box_list.append(box)
    return box_list


def lidar_nusc_box_to_global(info,
                             boxes,
                             classes,
                             eval_configs,
                             eval_version='detection_cvpr_2019'):
    """Convert the box from ego to global coordinate.

    Args:
        info (dict): Info for a specific sample data, including the
            calibration information.
        boxes (list[:obj:`NuScenesBox`]): List of predicted NuScenesBoxes.
        classes (list[str]): Mapped classes in the evaluation.
        eval_configs (object): Evaluation configuration object.
        eval_version (str, optional): Evaluation version.
            Default: 'detection_cvpr_2019'

    Returns:
        list: List of standard NuScenesBoxes in the global
            coordinate.
    """
    box_list = []
    for box in boxes:
        # Move box to ego vehicle coord system
        box.rotate(pyquaternion.Quaternion(info['lidar2ego_rotation']))
        box.translate(np.array(info['lidar2ego_translation']))
        # filter det in ego.
        cls_range_map = eval_configs.class_range
        radius = np.linalg.norm(box.center[:2], 2)
        det_range = cls_range_map[classes[box.label]]
        if radius > det_range:
            continue
        # Move box to global coord system
        box.rotate(pyquaternion.Quaternion(info['ego2global_rotation']))
        box.translate(np.array(info['ego2global_translation']))
        box_list.append(box)
    return box_list