Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
lishj6
BEVFomer
Commits
4cd43886
Commit
4cd43886
authored
Sep 01, 2025
by
lishj6
🏸
Browse files
init
parent
a9a1fe81
Changes
207
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
1157 additions
and
0 deletions
+1157
-0
tools/misc/visualize_results.py
tools/misc/visualize_results.py
+49
-0
tools/model_converters/convert_votenet_checkpoints.py
tools/model_converters/convert_votenet_checkpoints.py
+152
-0
tools/model_converters/publish_model.py
tools/model_converters/publish_model.py
+35
-0
tools/model_converters/regnet2mmdet.py
tools/model_converters/regnet2mmdet.py
+89
-0
tools/test.py
tools/test.py
+266
-0
tools/train copy.py
tools/train copy.py
+283
-0
tools/train.py
tools/train.py
+283
-0
No files found.
tools/misc/visualize_results.py
0 → 100644
View file @
4cd43886
# Copyright (c) OpenMMLab. All rights reserved.
import
argparse
import
mmcv
from
mmcv
import
Config
from
mmdet3d.datasets
import
build_dataset
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
'MMDet3D visualize the results'
)
parser
.
add_argument
(
'config'
,
help
=
'test config file path'
)
parser
.
add_argument
(
'--result'
,
help
=
'results file in pickle format'
)
parser
.
add_argument
(
'--show-dir'
,
help
=
'directory where visualize results will be saved'
)
args
=
parser
.
parse_args
()
return
args
def
main
():
args
=
parse_args
()
if
args
.
result
is
not
None
and
\
not
args
.
result
.
endswith
((
'.pkl'
,
'.pickle'
)):
raise
ValueError
(
'The results file must be a pkl file.'
)
cfg
=
Config
.
fromfile
(
args
.
config
)
cfg
.
data
.
test
.
test_mode
=
True
# build the dataset
dataset
=
build_dataset
(
cfg
.
data
.
test
)
results
=
mmcv
.
load
(
args
.
result
)
if
getattr
(
dataset
,
'show'
,
None
)
is
not
None
:
# data loading pipeline for showing
eval_pipeline
=
cfg
.
get
(
'eval_pipeline'
,
{})
if
eval_pipeline
:
dataset
.
show
(
results
,
args
.
show_dir
,
pipeline
=
eval_pipeline
)
else
:
dataset
.
show
(
results
,
args
.
show_dir
)
# use default pipeline
else
:
raise
NotImplementedError
(
'Show is not implemented for dataset {}!'
.
format
(
type
(
dataset
).
__name__
))
if
__name__
==
'__main__'
:
main
()
tools/model_converters/convert_votenet_checkpoints.py
0 → 100644
View file @
4cd43886
# Copyright (c) OpenMMLab. All rights reserved.
import
argparse
import
tempfile
import
torch
from
mmcv
import
Config
from
mmcv.runner
import
load_state_dict
from
mmdet3d.models
import
build_detector
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
'MMDet3D upgrade model version(before v0.6.0) of VoteNet'
)
parser
.
add_argument
(
'checkpoint'
,
help
=
'checkpoint file'
)
parser
.
add_argument
(
'--out'
,
help
=
'path of the output checkpoint file'
)
args
=
parser
.
parse_args
()
return
args
def
parse_config
(
config_strings
):
"""Parse config from strings.
Args:
config_strings (string): strings of model config.
Returns:
Config: model config
"""
temp_file
=
tempfile
.
NamedTemporaryFile
()
config_path
=
f
'
{
temp_file
.
name
}
.py'
with
open
(
config_path
,
'w'
)
as
f
:
f
.
write
(
config_strings
)
config
=
Config
.
fromfile
(
config_path
)
# Update backbone config
if
'pool_mod'
in
config
.
model
.
backbone
:
config
.
model
.
backbone
.
pop
(
'pool_mod'
)
if
'sa_cfg'
not
in
config
.
model
.
backbone
:
config
.
model
.
backbone
[
'sa_cfg'
]
=
dict
(
type
=
'PointSAModule'
,
pool_mod
=
'max'
,
use_xyz
=
True
,
normalize_xyz
=
True
)
if
'type'
not
in
config
.
model
.
bbox_head
.
vote_aggregation_cfg
:
config
.
model
.
bbox_head
.
vote_aggregation_cfg
[
'type'
]
=
'PointSAModule'
# Update bbox_head config
if
'pred_layer_cfg'
not
in
config
.
model
.
bbox_head
:
config
.
model
.
bbox_head
[
'pred_layer_cfg'
]
=
dict
(
in_channels
=
128
,
shared_conv_channels
=
(
128
,
128
),
bias
=
True
)
if
'feat_channels'
in
config
.
model
.
bbox_head
:
config
.
model
.
bbox_head
.
pop
(
'feat_channels'
)
if
'vote_moudule_cfg'
in
config
.
model
.
bbox_head
:
config
.
model
.
bbox_head
[
'vote_module_cfg'
]
=
config
.
model
.
bbox_head
.
pop
(
'vote_moudule_cfg'
)
if
config
.
model
.
bbox_head
.
vote_aggregation_cfg
.
use_xyz
:
config
.
model
.
bbox_head
.
vote_aggregation_cfg
.
mlp_channels
[
0
]
-=
3
temp_file
.
close
()
return
config
def
main
():
"""Convert keys in checkpoints for VoteNet.
There can be some breaking changes during the development of mmdetection3d,
and this tool is used for upgrading checkpoints trained with old versions
(before v0.6.0) to the latest one.
"""
args
=
parse_args
()
checkpoint
=
torch
.
load
(
args
.
checkpoint
)
cfg
=
parse_config
(
checkpoint
[
'meta'
][
'config'
])
# Build the model and load checkpoint
model
=
build_detector
(
cfg
.
model
,
train_cfg
=
cfg
.
get
(
'train_cfg'
),
test_cfg
=
cfg
.
get
(
'test_cfg'
))
orig_ckpt
=
checkpoint
[
'state_dict'
]
converted_ckpt
=
orig_ckpt
.
copy
()
if
cfg
[
'dataset_type'
]
==
'ScanNetDataset'
:
NUM_CLASSES
=
18
elif
cfg
[
'dataset_type'
]
==
'SUNRGBDDataset'
:
NUM_CLASSES
=
10
else
:
raise
NotImplementedError
RENAME_PREFIX
=
{
'bbox_head.conv_pred.0'
:
'bbox_head.conv_pred.shared_convs.layer0'
,
'bbox_head.conv_pred.1'
:
'bbox_head.conv_pred.shared_convs.layer1'
}
DEL_KEYS
=
[
'bbox_head.conv_pred.0.bn.num_batches_tracked'
,
'bbox_head.conv_pred.1.bn.num_batches_tracked'
]
EXTRACT_KEYS
=
{
'bbox_head.conv_pred.conv_cls.weight'
:
(
'bbox_head.conv_pred.conv_out.weight'
,
[(
0
,
2
),
(
-
NUM_CLASSES
,
-
1
)]),
'bbox_head.conv_pred.conv_cls.bias'
:
(
'bbox_head.conv_pred.conv_out.bias'
,
[(
0
,
2
),
(
-
NUM_CLASSES
,
-
1
)]),
'bbox_head.conv_pred.conv_reg.weight'
:
(
'bbox_head.conv_pred.conv_out.weight'
,
[(
2
,
-
NUM_CLASSES
)]),
'bbox_head.conv_pred.conv_reg.bias'
:
(
'bbox_head.conv_pred.conv_out.bias'
,
[(
2
,
-
NUM_CLASSES
)])
}
# Delete some useless keys
for
key
in
DEL_KEYS
:
converted_ckpt
.
pop
(
key
)
# Rename keys with specific prefix
RENAME_KEYS
=
dict
()
for
old_key
in
converted_ckpt
.
keys
():
for
rename_prefix
in
RENAME_PREFIX
.
keys
():
if
rename_prefix
in
old_key
:
new_key
=
old_key
.
replace
(
rename_prefix
,
RENAME_PREFIX
[
rename_prefix
])
RENAME_KEYS
[
new_key
]
=
old_key
for
new_key
,
old_key
in
RENAME_KEYS
.
items
():
converted_ckpt
[
new_key
]
=
converted_ckpt
.
pop
(
old_key
)
# Extract weights and rename the keys
for
new_key
,
(
old_key
,
indices
)
in
EXTRACT_KEYS
.
items
():
cur_layers
=
orig_ckpt
[
old_key
]
converted_layers
=
[]
for
(
start
,
end
)
in
indices
:
if
end
!=
-
1
:
converted_layers
.
append
(
cur_layers
[
start
:
end
])
else
:
converted_layers
.
append
(
cur_layers
[
start
:])
converted_layers
=
torch
.
cat
(
converted_layers
,
0
)
converted_ckpt
[
new_key
]
=
converted_layers
if
old_key
in
converted_ckpt
.
keys
():
converted_ckpt
.
pop
(
old_key
)
# Check the converted checkpoint by loading to the model
load_state_dict
(
model
,
converted_ckpt
,
strict
=
True
)
checkpoint
[
'state_dict'
]
=
converted_ckpt
torch
.
save
(
checkpoint
,
args
.
out
)
if
__name__
==
'__main__'
:
main
()
tools/model_converters/publish_model.py
0 → 100644
View file @
4cd43886
# Copyright (c) OpenMMLab. All rights reserved.
import
argparse
import
subprocess
import
torch
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
'Process a checkpoint to be published'
)
parser
.
add_argument
(
'in_file'
,
help
=
'input checkpoint filename'
)
parser
.
add_argument
(
'out_file'
,
help
=
'output checkpoint filename'
)
args
=
parser
.
parse_args
()
return
args
def
process_checkpoint
(
in_file
,
out_file
):
checkpoint
=
torch
.
load
(
in_file
,
map_location
=
'cpu'
)
# remove optimizer for smaller file size
if
'optimizer'
in
checkpoint
:
del
checkpoint
[
'optimizer'
]
# if it is necessary to remove some sensitive data in checkpoint['meta'],
# add the code here.
torch
.
save
(
checkpoint
,
out_file
)
sha
=
subprocess
.
check_output
([
'sha256sum'
,
out_file
]).
decode
()
final_file
=
out_file
.
rstrip
(
'.pth'
)
+
'-{}.pth'
.
format
(
sha
[:
8
])
subprocess
.
Popen
([
'mv'
,
out_file
,
final_file
])
def
main
():
args
=
parse_args
()
process_checkpoint
(
args
.
in_file
,
args
.
out_file
)
if
__name__
==
'__main__'
:
main
()
tools/model_converters/regnet2mmdet.py
0 → 100644
View file @
4cd43886
# Copyright (c) OpenMMLab. All rights reserved.
import
argparse
import
torch
from
collections
import
OrderedDict
def
convert_stem
(
model_key
,
model_weight
,
state_dict
,
converted_names
):
new_key
=
model_key
.
replace
(
'stem.conv'
,
'conv1'
)
new_key
=
new_key
.
replace
(
'stem.bn'
,
'bn1'
)
state_dict
[
new_key
]
=
model_weight
converted_names
.
add
(
model_key
)
print
(
f
'Convert
{
model_key
}
to
{
new_key
}
'
)
def
convert_head
(
model_key
,
model_weight
,
state_dict
,
converted_names
):
new_key
=
model_key
.
replace
(
'head.fc'
,
'fc'
)
state_dict
[
new_key
]
=
model_weight
converted_names
.
add
(
model_key
)
print
(
f
'Convert
{
model_key
}
to
{
new_key
}
'
)
def
convert_reslayer
(
model_key
,
model_weight
,
state_dict
,
converted_names
):
split_keys
=
model_key
.
split
(
'.'
)
layer
,
block
,
module
=
split_keys
[:
3
]
block_id
=
int
(
block
[
1
:])
layer_name
=
f
'layer
{
int
(
layer
[
1
:])
}
'
block_name
=
f
'
{
block_id
-
1
}
'
if
block_id
==
1
and
module
==
'bn'
:
new_key
=
f
'
{
layer_name
}
.
{
block_name
}
.downsample.1.
{
split_keys
[
-
1
]
}
'
elif
block_id
==
1
and
module
==
'proj'
:
new_key
=
f
'
{
layer_name
}
.
{
block_name
}
.downsample.0.
{
split_keys
[
-
1
]
}
'
elif
module
==
'f'
:
if
split_keys
[
3
]
==
'a_bn'
:
module_name
=
'bn1'
elif
split_keys
[
3
]
==
'b_bn'
:
module_name
=
'bn2'
elif
split_keys
[
3
]
==
'c_bn'
:
module_name
=
'bn3'
elif
split_keys
[
3
]
==
'a'
:
module_name
=
'conv1'
elif
split_keys
[
3
]
==
'b'
:
module_name
=
'conv2'
elif
split_keys
[
3
]
==
'c'
:
module_name
=
'conv3'
new_key
=
f
'
{
layer_name
}
.
{
block_name
}
.
{
module_name
}
.
{
split_keys
[
-
1
]
}
'
else
:
raise
ValueError
(
f
'Unsupported conversion of key
{
model_key
}
'
)
print
(
f
'Convert
{
model_key
}
to
{
new_key
}
'
)
state_dict
[
new_key
]
=
model_weight
converted_names
.
add
(
model_key
)
def
convert
(
src
,
dst
):
"""Convert keys in pycls pretrained RegNet models to mmdet style."""
# load caffe model
regnet_model
=
torch
.
load
(
src
)
blobs
=
regnet_model
[
'model_state'
]
# convert to pytorch style
state_dict
=
OrderedDict
()
converted_names
=
set
()
for
key
,
weight
in
blobs
.
items
():
if
'stem'
in
key
:
convert_stem
(
key
,
weight
,
state_dict
,
converted_names
)
elif
'head'
in
key
:
convert_head
(
key
,
weight
,
state_dict
,
converted_names
)
elif
key
.
startswith
(
's'
):
convert_reslayer
(
key
,
weight
,
state_dict
,
converted_names
)
# check if all layers are converted
for
key
in
blobs
:
if
key
not
in
converted_names
:
print
(
f
'not converted:
{
key
}
'
)
# save checkpoint
checkpoint
=
dict
()
checkpoint
[
'state_dict'
]
=
state_dict
torch
.
save
(
checkpoint
,
dst
)
def
main
():
parser
=
argparse
.
ArgumentParser
(
description
=
'Convert model keys'
)
parser
.
add_argument
(
'src'
,
help
=
'src detectron model path'
)
parser
.
add_argument
(
'dst'
,
help
=
'save path'
)
args
=
parser
.
parse_args
()
convert
(
args
.
src
,
args
.
dst
)
if
__name__
==
'__main__'
:
main
()
tools/test.py
0 → 100644
View file @
4cd43886
# ---------------------------------------------
# Copyright (c) OpenMMLab. All rights reserved.
# ---------------------------------------------
# Modified by Zhiqi Li
# ---------------------------------------------
import
argparse
import
mmcv
import
os
import
torch
import
warnings
from
mmcv
import
Config
,
DictAction
from
mmcv.cnn
import
fuse_conv_bn
from
mmcv.parallel
import
MMDataParallel
,
MMDistributedDataParallel
from
mmcv.runner
import
(
get_dist_info
,
init_dist
,
load_checkpoint
,
wrap_fp16_model
)
from
mmdet3d.apis
import
single_gpu_test
from
mmdet3d.datasets
import
build_dataset
from
projects.mmdet3d_plugin.datasets.builder
import
build_dataloader
from
mmdet3d.models
import
build_model
from
mmdet.apis
import
set_random_seed
from
projects.mmdet3d_plugin.bevformer.apis.test
import
custom_multi_gpu_test
from
mmdet.datasets
import
replace_ImageToTensor
import
time
import
os.path
as
osp
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
'MMDet test (and eval) a model'
)
parser
.
add_argument
(
'config'
,
help
=
'test config file path'
)
parser
.
add_argument
(
'checkpoint'
,
help
=
'checkpoint file'
)
parser
.
add_argument
(
'--out'
,
help
=
'output result file in pickle format'
)
parser
.
add_argument
(
'--fuse-conv-bn'
,
action
=
'store_true'
,
help
=
'Whether to fuse conv and bn, this will slightly increase'
'the inference speed'
)
parser
.
add_argument
(
'--format-only'
,
action
=
'store_true'
,
help
=
'Format the output results without perform evaluation. It is'
'useful when you want to format the result to a specific format and '
'submit it to the test server'
)
parser
.
add_argument
(
'--eval'
,
type
=
str
,
nargs
=
'+'
,
help
=
'evaluation metrics, which depends on the dataset, e.g., "bbox",'
' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC'
)
parser
.
add_argument
(
'--show'
,
action
=
'store_true'
,
help
=
'show results'
)
parser
.
add_argument
(
'--show-dir'
,
help
=
'directory where results will be saved'
)
parser
.
add_argument
(
'--gpu-collect'
,
action
=
'store_true'
,
help
=
'whether to use gpu to collect results.'
)
parser
.
add_argument
(
'--tmpdir'
,
help
=
'tmp directory used for collecting results from multiple '
'workers, available when gpu-collect is not specified'
)
parser
.
add_argument
(
'--seed'
,
type
=
int
,
default
=
0
,
help
=
'random seed'
)
parser
.
add_argument
(
'--deterministic'
,
action
=
'store_true'
,
help
=
'whether to set deterministic options for CUDNN backend.'
)
parser
.
add_argument
(
'--cfg-options'
,
nargs
=
'+'
,
action
=
DictAction
,
help
=
'override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.'
)
parser
.
add_argument
(
'--options'
,
nargs
=
'+'
,
action
=
DictAction
,
help
=
'custom options for evaluation, the key-value pair in xxx=yyy '
'format will be kwargs for dataset.evaluate() function (deprecate), '
'change to --eval-options instead.'
)
parser
.
add_argument
(
'--eval-options'
,
nargs
=
'+'
,
action
=
DictAction
,
help
=
'custom options for evaluation, the key-value pair in xxx=yyy '
'format will be kwargs for dataset.evaluate() function'
)
parser
.
add_argument
(
'--launcher'
,
choices
=
[
'none'
,
'pytorch'
,
'slurm'
,
'mpi'
],
default
=
'none'
,
help
=
'job launcher'
)
parser
.
add_argument
(
'--local_rank'
,
type
=
int
,
default
=
0
)
args
=
parser
.
parse_args
()
if
'LOCAL_RANK'
not
in
os
.
environ
:
os
.
environ
[
'LOCAL_RANK'
]
=
str
(
args
.
local_rank
)
if
args
.
options
and
args
.
eval_options
:
raise
ValueError
(
'--options and --eval-options cannot be both specified, '
'--options is deprecated in favor of --eval-options'
)
if
args
.
options
:
warnings
.
warn
(
'--options is deprecated in favor of --eval-options'
)
args
.
eval_options
=
args
.
options
return
args
def
main
():
args
=
parse_args
()
assert
args
.
out
or
args
.
eval
or
args
.
format_only
or
args
.
show
\
or
args
.
show_dir
,
\
(
'Please specify at least one operation (save/eval/format/show the '
'results / save the results) with the argument "--out", "--eval"'
', "--format-only", "--show" or "--show-dir"'
)
if
args
.
eval
and
args
.
format_only
:
raise
ValueError
(
'--eval and --format_only cannot be both specified'
)
if
args
.
out
is
not
None
and
not
args
.
out
.
endswith
((
'.pkl'
,
'.pickle'
)):
raise
ValueError
(
'The output file must be a pkl file.'
)
cfg
=
Config
.
fromfile
(
args
.
config
)
if
args
.
cfg_options
is
not
None
:
cfg
.
merge_from_dict
(
args
.
cfg_options
)
# import modules from string list.
if
cfg
.
get
(
'custom_imports'
,
None
):
from
mmcv.utils
import
import_modules_from_strings
import_modules_from_strings
(
**
cfg
[
'custom_imports'
])
# import modules from plguin/xx, registry will be updated
if
hasattr
(
cfg
,
'plugin'
):
if
cfg
.
plugin
:
import
importlib
if
hasattr
(
cfg
,
'plugin_dir'
):
plugin_dir
=
cfg
.
plugin_dir
_module_dir
=
os
.
path
.
dirname
(
plugin_dir
)
_module_dir
=
_module_dir
.
split
(
'/'
)
_module_path
=
_module_dir
[
0
]
for
m
in
_module_dir
[
1
:]:
_module_path
=
_module_path
+
'.'
+
m
print
(
_module_path
)
plg_lib
=
importlib
.
import_module
(
_module_path
)
else
:
# import dir is the dirpath for the config file
_module_dir
=
os
.
path
.
dirname
(
args
.
config
)
_module_dir
=
_module_dir
.
split
(
'/'
)
_module_path
=
_module_dir
[
0
]
for
m
in
_module_dir
[
1
:]:
_module_path
=
_module_path
+
'.'
+
m
print
(
_module_path
)
plg_lib
=
importlib
.
import_module
(
_module_path
)
# set cudnn_benchmark
if
cfg
.
get
(
'cudnn_benchmark'
,
False
):
torch
.
backends
.
cudnn
.
benchmark
=
True
# set tf32
if
cfg
.
get
(
'close_tf32'
,
False
):
torch
.
backends
.
cuda
.
matmul
.
allow_tf32
=
False
torch
.
backends
.
cudnn
.
allow_tf32
=
False
cfg
.
model
.
pretrained
=
None
# in case the test dataset is concatenated
samples_per_gpu
=
1
if
isinstance
(
cfg
.
data
.
test
,
dict
):
cfg
.
data
.
test
.
test_mode
=
True
samples_per_gpu
=
cfg
.
data
.
test
.
pop
(
'samples_per_gpu'
,
1
)
if
samples_per_gpu
>
1
:
# Replace 'ImageToTensor' to 'DefaultFormatBundle'
cfg
.
data
.
test
.
pipeline
=
replace_ImageToTensor
(
cfg
.
data
.
test
.
pipeline
)
elif
isinstance
(
cfg
.
data
.
test
,
list
):
for
ds_cfg
in
cfg
.
data
.
test
:
ds_cfg
.
test_mode
=
True
samples_per_gpu
=
max
(
[
ds_cfg
.
pop
(
'samples_per_gpu'
,
1
)
for
ds_cfg
in
cfg
.
data
.
test
])
if
samples_per_gpu
>
1
:
for
ds_cfg
in
cfg
.
data
.
test
:
ds_cfg
.
pipeline
=
replace_ImageToTensor
(
ds_cfg
.
pipeline
)
# init distributed env first, since logger depends on the dist info.
if
args
.
launcher
==
'none'
:
distributed
=
False
else
:
distributed
=
True
init_dist
(
args
.
launcher
,
**
cfg
.
dist_params
)
# set random seeds
if
args
.
seed
is
not
None
:
set_random_seed
(
args
.
seed
,
deterministic
=
args
.
deterministic
)
# build the dataloader
dataset
=
build_dataset
(
cfg
.
data
.
test
)
data_loader
=
build_dataloader
(
dataset
,
samples_per_gpu
=
samples_per_gpu
,
workers_per_gpu
=
cfg
.
data
.
workers_per_gpu
,
dist
=
distributed
,
shuffle
=
False
,
nonshuffler_sampler
=
cfg
.
data
.
nonshuffler_sampler
,
)
# build the model and load checkpoint
cfg
.
model
.
train_cfg
=
None
model
=
build_model
(
cfg
.
model
,
test_cfg
=
cfg
.
get
(
'test_cfg'
))
fp16_cfg
=
cfg
.
get
(
'fp16'
,
None
)
if
fp16_cfg
is
not
None
:
wrap_fp16_model
(
model
)
checkpoint
=
load_checkpoint
(
model
,
args
.
checkpoint
,
map_location
=
'cpu'
)
if
args
.
fuse_conv_bn
:
model
=
fuse_conv_bn
(
model
)
# old versions did not save class info in checkpoints, this walkaround is
# for backward compatibility
if
'CLASSES'
in
checkpoint
.
get
(
'meta'
,
{}):
model
.
CLASSES
=
checkpoint
[
'meta'
][
'CLASSES'
]
else
:
model
.
CLASSES
=
dataset
.
CLASSES
# palette for visualization in segmentation tasks
if
'PALETTE'
in
checkpoint
.
get
(
'meta'
,
{}):
model
.
PALETTE
=
checkpoint
[
'meta'
][
'PALETTE'
]
elif
hasattr
(
dataset
,
'PALETTE'
):
# segmentation dataset has `PALETTE` attribute
model
.
PALETTE
=
dataset
.
PALETTE
if
not
distributed
:
assert
False
# model = MMDataParallel(model, device_ids=[0])
# outputs = single_gpu_test(model, data_loader, args.show, args.show_dir)
else
:
model
=
MMDistributedDataParallel
(
model
.
cuda
(),
device_ids
=
[
torch
.
cuda
.
current_device
()],
broadcast_buffers
=
False
)
outputs
=
custom_multi_gpu_test
(
model
,
data_loader
,
args
.
tmpdir
,
args
.
gpu_collect
)
rank
,
_
=
get_dist_info
()
if
rank
==
0
:
if
args
.
out
:
print
(
f
'
\n
writing results to
{
args
.
out
}
'
)
assert
False
#mmcv.dump(outputs['bbox_results'], args.out)
kwargs
=
{}
if
args
.
eval_options
is
None
else
args
.
eval_options
kwargs
[
'jsonfile_prefix'
]
=
osp
.
join
(
'test'
,
args
.
config
.
split
(
'/'
)[
-
1
].
split
(
'.'
)[
-
2
],
time
.
ctime
().
replace
(
' '
,
'_'
).
replace
(
':'
,
'_'
))
if
args
.
format_only
:
dataset
.
format_results
(
outputs
,
**
kwargs
)
if
args
.
eval
:
eval_kwargs
=
cfg
.
get
(
'evaluation'
,
{}).
copy
()
# hard-code way to remove EvalHook args
for
key
in
[
'interval'
,
'tmpdir'
,
'start'
,
'gpu_collect'
,
'save_best'
,
'rule'
]:
eval_kwargs
.
pop
(
key
,
None
)
eval_kwargs
.
update
(
dict
(
metric
=
args
.
eval
,
**
kwargs
))
print
(
dataset
.
evaluate
(
outputs
,
**
eval_kwargs
))
if
__name__
==
'__main__'
:
main
()
tools/train copy.py
0 → 100644
View file @
4cd43886
# ---------------------------------------------
# Copyright (c) OpenMMLab. All rights reserved.
# ---------------------------------------------
# Modified by Zhiqi Li
# ---------------------------------------------
from
__future__
import
division
import
argparse
import
copy
import
mmcv
import
os
import
time
import
torch
import
warnings
from
mmcv
import
Config
,
DictAction
from
mmcv.runner
import
get_dist_info
,
init_dist
from
os
import
path
as
osp
from
mmdet
import
__version__
as
mmdet_version
from
mmdet3d
import
__version__
as
mmdet3d_version
#from mmdet3d.apis import train_model
from
mmdet3d.datasets
import
build_dataset
from
mmdet3d.models
import
build_model
from
mmdet3d.utils
import
collect_env
,
get_root_logger
from
mmdet.apis
import
set_random_seed
from
mmseg
import
__version__
as
mmseg_version
from
mmcv.utils
import
TORCH_VERSION
,
digit_version
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
'Train a detector'
)
parser
.
add_argument
(
'config'
,
help
=
'train config file path'
)
parser
.
add_argument
(
'--work-dir'
,
help
=
'the dir to save logs and models'
)
parser
.
add_argument
(
'--resume-from'
,
help
=
'the checkpoint file to resume from'
)
parser
.
add_argument
(
'--no-validate'
,
action
=
'store_true'
,
help
=
'whether not to evaluate the checkpoint during training'
)
group_gpus
=
parser
.
add_mutually_exclusive_group
()
group_gpus
.
add_argument
(
'--gpus'
,
type
=
int
,
help
=
'number of gpus to use '
'(only applicable to non-distributed training)'
)
group_gpus
.
add_argument
(
'--gpu-ids'
,
type
=
int
,
nargs
=
'+'
,
help
=
'ids of gpus to use '
'(only applicable to non-distributed training)'
)
parser
.
add_argument
(
'--seed'
,
type
=
int
,
default
=
0
,
help
=
'random seed'
)
parser
.
add_argument
(
'--deterministic'
,
action
=
'store_true'
,
help
=
'whether to set deterministic options for CUDNN backend.'
)
parser
.
add_argument
(
'--options'
,
nargs
=
'+'
,
action
=
DictAction
,
help
=
'override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file (deprecate), '
'change to --cfg-options instead.'
)
parser
.
add_argument
(
'--cfg-options'
,
nargs
=
'+'
,
action
=
DictAction
,
help
=
'override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.'
)
parser
.
add_argument
(
'--launcher'
,
choices
=
[
'none'
,
'pytorch'
,
'slurm'
,
'mpi'
],
default
=
'none'
,
help
=
'job launcher'
)
parser
.
add_argument
(
'--local_rank'
,
type
=
int
,
default
=
0
)
parser
.
add_argument
(
'--autoscale-lr'
,
action
=
'store_true'
,
help
=
'automatically scale lr with the number of gpus'
)
parser
.
add_argument
(
'--enable-profiler'
,
action
=
'store_true'
,
help
=
'enable torch profiler during training'
)
parser
.
add_argument
(
'--to_channels_last'
,
action
=
'store_true'
,
help
=
'nhwc'
)
args
=
parser
.
parse_args
()
if
'LOCAL_RANK'
not
in
os
.
environ
:
os
.
environ
[
'LOCAL_RANK'
]
=
str
(
args
.
local_rank
)
if
args
.
options
and
args
.
cfg_options
:
raise
ValueError
(
'--options and --cfg-options cannot be both specified, '
'--options is deprecated in favor of --cfg-options'
)
if
args
.
options
:
warnings
.
warn
(
'--options is deprecated in favor of --cfg-options'
)
args
.
cfg_options
=
args
.
options
return
args
def
main
():
args
=
parse_args
()
cfg
=
Config
.
fromfile
(
args
.
config
)
cfg
.
enable_profiler
=
args
.
enable_profiler
if
args
.
cfg_options
is
not
None
:
cfg
.
merge_from_dict
(
args
.
cfg_options
)
# import modules from string list.
if
cfg
.
get
(
'custom_imports'
,
None
):
from
mmcv.utils
import
import_modules_from_strings
import_modules_from_strings
(
**
cfg
[
'custom_imports'
])
# import modules from plguin/xx, registry will be updated
if
hasattr
(
cfg
,
'plugin'
):
if
cfg
.
plugin
:
import
importlib
if
hasattr
(
cfg
,
'plugin_dir'
):
plugin_dir
=
cfg
.
plugin_dir
_module_dir
=
os
.
path
.
dirname
(
plugin_dir
)
_module_dir
=
_module_dir
.
split
(
'/'
)
_module_path
=
_module_dir
[
0
]
for
m
in
_module_dir
[
1
:]:
_module_path
=
_module_path
+
'.'
+
m
print
(
_module_path
)
plg_lib
=
importlib
.
import_module
(
_module_path
)
else
:
# import dir is the dirpath for the config file
_module_dir
=
os
.
path
.
dirname
(
args
.
config
)
_module_dir
=
_module_dir
.
split
(
'/'
)
_module_path
=
_module_dir
[
0
]
for
m
in
_module_dir
[
1
:]:
_module_path
=
_module_path
+
'.'
+
m
print
(
_module_path
)
plg_lib
=
importlib
.
import_module
(
_module_path
)
from
projects.mmdet3d_plugin.bevformer.apis.train
import
custom_train_model
# set cudnn_benchmark
if
cfg
.
get
(
'cudnn_benchmark'
,
False
):
torch
.
backends
.
cudnn
.
benchmark
=
True
# set tf32
if
cfg
.
get
(
'close_tf32'
,
False
):
torch
.
backends
.
cuda
.
matmul
.
allow_tf32
=
False
torch
.
backends
.
cudnn
.
allow_tf32
=
False
# work_dir is determined in this priority: CLI > segment in file > filename
if
args
.
work_dir
is
not
None
:
# update configs according to CLI args if args.work_dir is not None
cfg
.
work_dir
=
args
.
work_dir
elif
cfg
.
get
(
'work_dir'
,
None
)
is
None
:
# use config filename as default work_dir if cfg.work_dir is None
cfg
.
work_dir
=
osp
.
join
(
'./work_dirs'
,
osp
.
splitext
(
osp
.
basename
(
args
.
config
))[
0
])
# if args.resume_from is not None:
if
args
.
resume_from
is
not
None
and
osp
.
isfile
(
args
.
resume_from
):
cfg
.
resume_from
=
args
.
resume_from
if
args
.
gpu_ids
is
not
None
:
cfg
.
gpu_ids
=
args
.
gpu_ids
else
:
cfg
.
gpu_ids
=
range
(
1
)
if
args
.
gpus
is
None
else
range
(
args
.
gpus
)
if
digit_version
(
TORCH_VERSION
)
==
digit_version
(
'1.8.1'
)
and
cfg
.
optimizer
[
'type'
]
==
'AdamW'
:
cfg
.
optimizer
[
'type'
]
=
'AdamW2'
# fix bug in Adamw
if
args
.
autoscale_lr
:
# apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
cfg
.
optimizer
[
'lr'
]
=
cfg
.
optimizer
[
'lr'
]
*
len
(
cfg
.
gpu_ids
)
/
8
# init distributed env first, since logger depends on the dist info.
if
args
.
launcher
==
'none'
:
distributed
=
False
else
:
distributed
=
True
init_dist
(
args
.
launcher
,
**
cfg
.
dist_params
)
# re-set gpu_ids with distributed training mode
_
,
world_size
=
get_dist_info
()
cfg
.
gpu_ids
=
range
(
world_size
)
# create work_dir
mmcv
.
mkdir_or_exist
(
osp
.
abspath
(
cfg
.
work_dir
))
# dump config
cfg
.
dump
(
osp
.
join
(
cfg
.
work_dir
,
osp
.
basename
(
args
.
config
)))
# init the logger before other steps
timestamp
=
time
.
strftime
(
'%Y%m%d_%H%M%S'
,
time
.
localtime
())
log_file
=
osp
.
join
(
cfg
.
work_dir
,
f
'
{
timestamp
}
.log'
)
# specify logger name, if we still use 'mmdet', the output info will be
# filtered and won't be saved in the log_file
# TODO: ugly workaround to judge whether we are training det or seg model
if
cfg
.
model
.
type
in
[
'EncoderDecoder3D'
]:
logger_name
=
'mmseg'
else
:
logger_name
=
'mmdet'
logger
=
get_root_logger
(
log_file
=
log_file
,
log_level
=
cfg
.
log_level
,
name
=
logger_name
)
# init the meta dict to record some important information such as
# environment info and seed, which will be logged
meta
=
dict
()
# log env info
env_info_dict
=
collect_env
()
env_info
=
'
\n
'
.
join
([(
f
'
{
k
}
:
{
v
}
'
)
for
k
,
v
in
env_info_dict
.
items
()])
dash_line
=
'-'
*
60
+
'
\n
'
logger
.
info
(
'Environment info:
\n
'
+
dash_line
+
env_info
+
'
\n
'
+
dash_line
)
meta
[
'env_info'
]
=
env_info
meta
[
'config'
]
=
cfg
.
pretty_text
# log some basic info
logger
.
info
(
f
'Distributed training:
{
distributed
}
'
)
logger
.
info
(
f
'Config:
\n
{
cfg
.
pretty_text
}
'
)
# set random seeds
if
args
.
seed
is
not
None
:
logger
.
info
(
f
'Set random seed to
{
args
.
seed
}
, '
f
'deterministic:
{
args
.
deterministic
}
'
)
set_random_seed
(
args
.
seed
,
deterministic
=
args
.
deterministic
)
cfg
.
seed
=
args
.
seed
meta
[
'seed'
]
=
args
.
seed
meta
[
'exp_name'
]
=
osp
.
basename
(
args
.
config
)
model
=
build_model
(
cfg
.
model
,
train_cfg
=
cfg
.
get
(
'train_cfg'
),
test_cfg
=
cfg
.
get
(
'test_cfg'
))
model
.
init_weights
()
logger
.
info
(
f
'Model:
\n
{
model
}
'
)
datasets
=
[
build_dataset
(
cfg
.
data
.
train
)]
if
len
(
cfg
.
workflow
)
==
2
:
val_dataset
=
copy
.
deepcopy
(
cfg
.
data
.
val
)
# in case we use a dataset wrapper
if
'dataset'
in
cfg
.
data
.
train
:
val_dataset
.
pipeline
=
cfg
.
data
.
train
.
dataset
.
pipeline
else
:
val_dataset
.
pipeline
=
cfg
.
data
.
train
.
pipeline
# set test_mode=False here in deep copied config
# which do not affect AP/AR calculation later
# refer to https://mmdetection3d.readthedocs.io/en/latest/tutorials/customize_runtime.html#customize-workflow # noqa
val_dataset
.
test_mode
=
False
datasets
.
append
(
build_dataset
(
val_dataset
))
if
cfg
.
checkpoint_config
is
not
None
:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg
.
checkpoint_config
.
meta
=
dict
(
mmdet_version
=
mmdet_version
,
mmseg_version
=
mmseg_version
,
mmdet3d_version
=
mmdet3d_version
,
config
=
cfg
.
pretty_text
,
CLASSES
=
datasets
[
0
].
CLASSES
,
PALETTE
=
datasets
[
0
].
PALETTE
# for segmentors
if
hasattr
(
datasets
[
0
],
'PALETTE'
)
else
None
)
# add an attribute for visualization convenience
model
.
CLASSES
=
datasets
[
0
].
CLASSES
torch
.
backends
.
cudnn
.
benchmark
=
True
# 启用自动寻找最优卷积算法
torch
.
backends
.
cudnn
.
deterministic
=
False
# 允许非确定性算法提升速度
custom_train_model
(
model
,
datasets
,
cfg
,
distributed
=
distributed
,
validate
=
(
not
args
.
no_validate
),
timestamp
=
timestamp
,
meta
=
meta
)
if
__name__
==
'__main__'
:
torch
.
multiprocessing
.
set_start_method
(
'fork'
)
main
()
tools/train.py
0 → 100644
View file @
4cd43886
# ---------------------------------------------
# Copyright (c) OpenMMLab. All rights reserved.
# ---------------------------------------------
# Modified by Zhiqi Li
# ---------------------------------------------
from
__future__
import
division
import
argparse
import
copy
import
mmcv
import
os
import
time
import
torch
import
warnings
from
mmcv
import
Config
,
DictAction
from
mmcv.runner
import
get_dist_info
,
init_dist
from
os
import
path
as
osp
from
mmdet
import
__version__
as
mmdet_version
from
mmdet3d
import
__version__
as
mmdet3d_version
#from mmdet3d.apis import train_model
from
mmdet3d.datasets
import
build_dataset
from
mmdet3d.models
import
build_model
from
mmdet3d.utils
import
collect_env
,
get_root_logger
from
mmdet.apis
import
set_random_seed
from
mmseg
import
__version__
as
mmseg_version
from
mmcv.utils
import
TORCH_VERSION
,
digit_version
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
'Train a detector'
)
parser
.
add_argument
(
'config'
,
help
=
'train config file path'
)
parser
.
add_argument
(
'--work-dir'
,
help
=
'the dir to save logs and models'
)
parser
.
add_argument
(
'--resume-from'
,
help
=
'the checkpoint file to resume from'
)
parser
.
add_argument
(
'--no-validate'
,
action
=
'store_true'
,
help
=
'whether not to evaluate the checkpoint during training'
)
group_gpus
=
parser
.
add_mutually_exclusive_group
()
group_gpus
.
add_argument
(
'--gpus'
,
type
=
int
,
help
=
'number of gpus to use '
'(only applicable to non-distributed training)'
)
group_gpus
.
add_argument
(
'--gpu-ids'
,
type
=
int
,
nargs
=
'+'
,
help
=
'ids of gpus to use '
'(only applicable to non-distributed training)'
)
parser
.
add_argument
(
'--seed'
,
type
=
int
,
default
=
0
,
help
=
'random seed'
)
parser
.
add_argument
(
'--deterministic'
,
action
=
'store_true'
,
help
=
'whether to set deterministic options for CUDNN backend.'
)
parser
.
add_argument
(
'--options'
,
nargs
=
'+'
,
action
=
DictAction
,
help
=
'override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file (deprecate), '
'change to --cfg-options instead.'
)
parser
.
add_argument
(
'--cfg-options'
,
nargs
=
'+'
,
action
=
DictAction
,
help
=
'override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.'
)
parser
.
add_argument
(
'--launcher'
,
choices
=
[
'none'
,
'pytorch'
,
'slurm'
,
'mpi'
],
default
=
'none'
,
help
=
'job launcher'
)
parser
.
add_argument
(
'--local_rank'
,
type
=
int
,
default
=
0
)
parser
.
add_argument
(
'--autoscale-lr'
,
action
=
'store_true'
,
help
=
'automatically scale lr with the number of gpus'
)
parser
.
add_argument
(
'--enable-profiler'
,
action
=
'store_true'
,
help
=
'enable torch profiler during training'
)
parser
.
add_argument
(
'--to_channels_last'
,
action
=
'store_true'
,
help
=
'nhwc'
)
args
=
parser
.
parse_args
()
if
'LOCAL_RANK'
not
in
os
.
environ
:
os
.
environ
[
'LOCAL_RANK'
]
=
str
(
args
.
local_rank
)
if
args
.
options
and
args
.
cfg_options
:
raise
ValueError
(
'--options and --cfg-options cannot be both specified, '
'--options is deprecated in favor of --cfg-options'
)
if
args
.
options
:
warnings
.
warn
(
'--options is deprecated in favor of --cfg-options'
)
args
.
cfg_options
=
args
.
options
return
args
def
main
():
args
=
parse_args
()
cfg
=
Config
.
fromfile
(
args
.
config
)
cfg
.
enable_profiler
=
args
.
enable_profiler
if
args
.
cfg_options
is
not
None
:
cfg
.
merge_from_dict
(
args
.
cfg_options
)
# import modules from string list.
if
cfg
.
get
(
'custom_imports'
,
None
):
from
mmcv.utils
import
import_modules_from_strings
import_modules_from_strings
(
**
cfg
[
'custom_imports'
])
# import modules from plguin/xx, registry will be updated
if
hasattr
(
cfg
,
'plugin'
):
if
cfg
.
plugin
:
import
importlib
if
hasattr
(
cfg
,
'plugin_dir'
):
plugin_dir
=
cfg
.
plugin_dir
_module_dir
=
os
.
path
.
dirname
(
plugin_dir
)
_module_dir
=
_module_dir
.
split
(
'/'
)
_module_path
=
_module_dir
[
0
]
for
m
in
_module_dir
[
1
:]:
_module_path
=
_module_path
+
'.'
+
m
print
(
_module_path
)
plg_lib
=
importlib
.
import_module
(
_module_path
)
else
:
# import dir is the dirpath for the config file
_module_dir
=
os
.
path
.
dirname
(
args
.
config
)
_module_dir
=
_module_dir
.
split
(
'/'
)
_module_path
=
_module_dir
[
0
]
for
m
in
_module_dir
[
1
:]:
_module_path
=
_module_path
+
'.'
+
m
print
(
_module_path
)
plg_lib
=
importlib
.
import_module
(
_module_path
)
from
projects.mmdet3d_plugin.bevformer.apis.train
import
custom_train_model
# set cudnn_benchmark
if
cfg
.
get
(
'cudnn_benchmark'
,
False
):
torch
.
backends
.
cudnn
.
benchmark
=
True
# set tf32
if
cfg
.
get
(
'close_tf32'
,
False
):
torch
.
backends
.
cuda
.
matmul
.
allow_tf32
=
False
torch
.
backends
.
cudnn
.
allow_tf32
=
False
# work_dir is determined in this priority: CLI > segment in file > filename
if
args
.
work_dir
is
not
None
:
# update configs according to CLI args if args.work_dir is not None
cfg
.
work_dir
=
args
.
work_dir
elif
cfg
.
get
(
'work_dir'
,
None
)
is
None
:
# use config filename as default work_dir if cfg.work_dir is None
cfg
.
work_dir
=
osp
.
join
(
'./work_dirs'
,
osp
.
splitext
(
osp
.
basename
(
args
.
config
))[
0
])
# if args.resume_from is not None:
if
args
.
resume_from
is
not
None
and
osp
.
isfile
(
args
.
resume_from
):
cfg
.
resume_from
=
args
.
resume_from
if
args
.
gpu_ids
is
not
None
:
cfg
.
gpu_ids
=
args
.
gpu_ids
else
:
cfg
.
gpu_ids
=
range
(
1
)
if
args
.
gpus
is
None
else
range
(
args
.
gpus
)
if
digit_version
(
TORCH_VERSION
)
==
digit_version
(
'1.8.1'
)
and
cfg
.
optimizer
[
'type'
]
==
'AdamW'
:
cfg
.
optimizer
[
'type'
]
=
'AdamW2'
# fix bug in Adamw
if
args
.
autoscale_lr
:
# apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
cfg
.
optimizer
[
'lr'
]
=
cfg
.
optimizer
[
'lr'
]
*
len
(
cfg
.
gpu_ids
)
/
8
# init distributed env first, since logger depends on the dist info.
if
args
.
launcher
==
'none'
:
distributed
=
False
else
:
distributed
=
True
init_dist
(
args
.
launcher
,
**
cfg
.
dist_params
)
# re-set gpu_ids with distributed training mode
_
,
world_size
=
get_dist_info
()
cfg
.
gpu_ids
=
range
(
world_size
)
# create work_dir
mmcv
.
mkdir_or_exist
(
osp
.
abspath
(
cfg
.
work_dir
))
# dump config
cfg
.
dump
(
osp
.
join
(
cfg
.
work_dir
,
osp
.
basename
(
args
.
config
)))
# init the logger before other steps
timestamp
=
time
.
strftime
(
'%Y%m%d_%H%M%S'
,
time
.
localtime
())
log_file
=
osp
.
join
(
cfg
.
work_dir
,
f
'
{
timestamp
}
.log'
)
# specify logger name, if we still use 'mmdet', the output info will be
# filtered and won't be saved in the log_file
# TODO: ugly workaround to judge whether we are training det or seg model
if
cfg
.
model
.
type
in
[
'EncoderDecoder3D'
]:
logger_name
=
'mmseg'
else
:
logger_name
=
'mmdet'
logger
=
get_root_logger
(
log_file
=
log_file
,
log_level
=
cfg
.
log_level
,
name
=
logger_name
)
# init the meta dict to record some important information such as
# environment info and seed, which will be logged
meta
=
dict
()
# log env info
env_info_dict
=
collect_env
()
env_info
=
'
\n
'
.
join
([(
f
'
{
k
}
:
{
v
}
'
)
for
k
,
v
in
env_info_dict
.
items
()])
dash_line
=
'-'
*
60
+
'
\n
'
logger
.
info
(
'Environment info:
\n
'
+
dash_line
+
env_info
+
'
\n
'
+
dash_line
)
meta
[
'env_info'
]
=
env_info
meta
[
'config'
]
=
cfg
.
pretty_text
# log some basic info
logger
.
info
(
f
'Distributed training:
{
distributed
}
'
)
logger
.
info
(
f
'Config:
\n
{
cfg
.
pretty_text
}
'
)
# set random seeds
if
args
.
seed
is
not
None
:
logger
.
info
(
f
'Set random seed to
{
args
.
seed
}
, '
f
'deterministic:
{
args
.
deterministic
}
'
)
set_random_seed
(
args
.
seed
,
deterministic
=
args
.
deterministic
)
cfg
.
seed
=
args
.
seed
meta
[
'seed'
]
=
args
.
seed
meta
[
'exp_name'
]
=
osp
.
basename
(
args
.
config
)
model
=
build_model
(
cfg
.
model
,
train_cfg
=
cfg
.
get
(
'train_cfg'
),
test_cfg
=
cfg
.
get
(
'test_cfg'
))
model
.
init_weights
()
logger
.
info
(
f
'Model:
\n
{
model
}
'
)
datasets
=
[
build_dataset
(
cfg
.
data
.
train
)]
if
len
(
cfg
.
workflow
)
==
2
:
val_dataset
=
copy
.
deepcopy
(
cfg
.
data
.
val
)
# in case we use a dataset wrapper
if
'dataset'
in
cfg
.
data
.
train
:
val_dataset
.
pipeline
=
cfg
.
data
.
train
.
dataset
.
pipeline
else
:
val_dataset
.
pipeline
=
cfg
.
data
.
train
.
pipeline
# set test_mode=False here in deep copied config
# which do not affect AP/AR calculation later
# refer to https://mmdetection3d.readthedocs.io/en/latest/tutorials/customize_runtime.html#customize-workflow # noqa
val_dataset
.
test_mode
=
False
datasets
.
append
(
build_dataset
(
val_dataset
))
if
cfg
.
checkpoint_config
is
not
None
:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg
.
checkpoint_config
.
meta
=
dict
(
mmdet_version
=
mmdet_version
,
mmseg_version
=
mmseg_version
,
mmdet3d_version
=
mmdet3d_version
,
config
=
cfg
.
pretty_text
,
CLASSES
=
datasets
[
0
].
CLASSES
,
PALETTE
=
datasets
[
0
].
PALETTE
# for segmentors
if
hasattr
(
datasets
[
0
],
'PALETTE'
)
else
None
)
# add an attribute for visualization convenience
model
.
CLASSES
=
datasets
[
0
].
CLASSES
torch
.
backends
.
cudnn
.
benchmark
=
True
# 启用自动寻找最优卷积算法
torch
.
backends
.
cudnn
.
deterministic
=
False
# 允许非确定性算法提升速度
custom_train_model
(
model
,
datasets
,
cfg
,
distributed
=
distributed
,
validate
=
(
not
args
.
no_validate
),
timestamp
=
timestamp
,
meta
=
meta
)
if
__name__
==
'__main__'
:
torch
.
multiprocessing
.
set_start_method
(
'fork'
)
main
()
Prev
1
…
7
8
9
10
11
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment