@@ -43,9 +43,11 @@ RUN cd flash-attention && python setup.py install && rm -rf build
RUN cd flash-attention/hopper && python setup.py install&&rm-rf build
RUN git clone https://github.com/ModelTC/SageAttention-1104.git --depth 1
RUN git clone https://github.com/ModelTC/SageAttention.git --depth 1
RUN cd SageAttention &&CUDA_ARCHITECTURES="8.0,8.6,8.9,9.0,12.0"EXT_PARALLEL=4 NVCC_APPEND_FLAGS="--threads 8"MAX_JOBS=32 pip install--no-cache-dir-v-e .
RUN cd SageAttention-1104 &&TORCH_CUDA_ARCH_LIST="8.0,8.6,8.9,9.0,12.0"EXT_PARALLEL=4 NVCC_APPEND_FLAGS="--threads 8"MAX_JOBS=32 python setup.py install&&rm-rf build
RUN git clone https://github.com/ModelTC/SageAttention-1104.git --depth 1
RUN cd SageAttention-1104/sageattention3_blackwell && python setup.py install&&rm-rf build
@@ -27,10 +27,10 @@ We strongly recommend using the Docker environment, which is the simplest and fa
#### 1. Pull Image
Visit LightX2V's [Docker Hub](https://hub.docker.com/r/lightx2v/lightx2v/tags), select a tag with the latest date, such as `25110701-cu128`:
Visit LightX2V's [Docker Hub](https://hub.docker.com/r/lightx2v/lightx2v/tags), select a tag with the latest date, such as `25111001-cu128`:
```bash
docker pull lightx2v/lightx2v:25110701-cu128
docker pull lightx2v/lightx2v:25111001-cu128
```
We recommend using the `cuda128` environment for faster inference speed. If you need to use the `cuda124` environment, you can use image versions with the `-cu124` suffix:
...
...
@@ -51,7 +51,7 @@ For mainland China, if the network is unstable when pulling images, you can pull