"examples/pytorch/vscode:/vscode.git/clone" did not exist on "f5bba284f8cb471fe1db06c2fd9bdc228038e425"
Commit bce1d253 authored by gushiqiao's avatar gushiqiao Committed by GitHub
Browse files

Update benchmark

Update benchmark
parents e2b88793 92efbc38
# Benchmark # Benchmark
xxx For a better display of video playback effects and detailed performance comparisons, you can get better presentation and corresponding documentation content on this [🔗 page](https://github.com/ModelTC/LightX2V/blob/main/docs/EN/source/getting_started/benchmark_source.md).
# Benchmark
---
## H200 (~140GB VRAM)
**Software Environment:**
- Python 3.11
- PyTorch 2.7.1+cu128
- SageAttention 2.2.0
- vLLM 0.9.2
- sgl-kernel 0.1.8
### 480P 5s Video
**Test Configuration:**
- **Model**: [Wan2.1-I2V-14B-480P-Lightx2v](https://huggingface.co/lightx2v/Wan2.1-I2V-14B-480P-Lightx2v)
- **Parameters**: infer_steps=40, seed=42, enable_cfg=True
#### Performance Comparison
| Configuration | Model Load Time(s) | Inference Time(s) | GPU Memory(GB) | Speedup | Video Effect |
|:-------------|:------------------:|:-----------------:|:--------------:|:-------:|:------------:|
| Wan2.1 Official(baseline) | 68.26 | 366.04 | 71 | 1.0x | <video src="PATH_TO_BASELINE_480P_VIDEO" width="200px"></video> |
| **LightX2V_1** | 37.28 | 249.54 | 53 | **1.47x** | <video src="PATH_TO_LIGHTX2V_1_480P_VIDEO" width="200px"></video> |
| **LightX2V_2** | 37.24 | 216.16 | 50 | **1.69x** | <video src="PATH_TO_LIGHTX2V_2_480P_VIDEO" width="200px"></video> |
| **LightX2V_3** | 23.62 | 190.73 | 35 | **1.92x** | <video src="PATH_TO_LIGHTX2V_3_480P_VIDEO" width="200px"></video> |
| **LightX2V_4** | 23.62 | 107.19 | 35 | **3.41x** | <video src="PATH_TO_LIGHTX2V_4_480P_VIDEO" width="200px"></video> |
### 720P 5s Video
**Test Configuration:**
- **Model**: [Wan2.1-I2V-14B-720P-Lightx2v](https://huggingface.co/lightx2v/Wan2.1-I2V-14B-720P-Lightx2v)
- **Parameters**: infer_steps=40, seed=42, enable_cfg=True
*Coming soon...*
---
## RTX 4090 (~24GB VRAM)
### 480P 5s Video
*Coming soon...*
### 720P 5s Video
*Coming soon...*
---
## Table Descriptions
- **Wan2.1 Official(baseline)**: Baseline implementation based on [Wan2.1 official repository](https://github.com/Wan-Video/Wan2.1)
- **LightX2V_1**: Uses SageAttention2 to replace native attention mechanism with DIT BF16+FP32 mixed precision (sensitive layers), improving computational efficiency while maintaining precision
- **LightX2V_2**: Unified BF16 precision computation to further reduce memory usage and computational overhead while maintaining generation quality
- **LightX2V_3**: Quantization optimization introducing FP8 quantization technology to significantly reduce computational precision requirements, combined with Tiling VAE technology to optimize memory usage
- **LightX2V_4**: Ultimate optimization adding TeaCache (teacache_thresh=0.2) caching reuse technology on top of LightX2V_3 to achieve maximum acceleration by intelligently skipping redundant computations
# 基准测试 # 基准测试
xxx 由于要展示一些视频的播放效果和详细的性能对比,您可以在这个[🔗 页面](https://github.com/ModelTC/LightX2V/blob/main/docs/ZH_CN/source/getting_started/benchmark_source.md)获得更好的展示效果以及相对应的文档内容。
# 基准测试
---
## H200 (~140GB显存)
**软件环境配置:**
- Python 3.11
- PyTorch 2.7.1+cu128
- SageAttention 2.2.0
- vLLM 0.9.2
- sgl-kernel 0.1.8
### 480P 5s视频
**测试配置:**
- **模型**: [Wan2.1-I2V-14B-480P-Lightx2v](https://huggingface.co/lightx2v/Wan2.1-I2V-14B-480P-Lightx2v)
- **参数**: infer_steps=40, seed=42, enable_cfg=True
#### 性能对比
| 配置 | 模型加载时间(s) | 推理时间(s) | GPU显存占用(GB) | 加速比 | 视频效果 |
|:-----|:---------------:|:----------:|:---------------:|:------:|:--------:|
| Wan2.1 Official(baseline) | 68.26 | 366.04 | 71 | 1.0x | <video src="PATH_TO_BASELINE_480P_VIDEO" width="200px"></video> |
| **LightX2V_1** | 37.28 | 249.54 | 53 | **1.47x** | <video src="PATH_TO_LIGHTX2V_1_480P_VIDEO" width="200px"></video> |
| **LightX2V_2** | 37.24 | 216.16 | 50 | **1.69x** | <video src="PATH_TO_LIGHTX2V_2_480P_VIDEO" width="200px"></video> |
| **LightX2V_3** | 23.62 | 190.73 | 35 | **1.92x** | <video src="PATH_TO_LIGHTX2V_3_480P_VIDEO" width="200px"></video> |
| **LightX2V_4** | 23.62 | 107.19 | 35 | **3.41x** | <video src="PATH_TO_LIGHTX2V_4_480P_VIDEO" width="200px"></video> |
### 720P 5s视频
**测试配置:**
- **模型**: [Wan2.1-I2V-14B-720P-Lightx2v](https://huggingface.co/lightx2v/Wan2.1-I2V-14B-720P-Lightx2v)
- **参数**: infer_steps=40, seed=42, enable_cfg=True
*即将更新...*
---
## RTX 4090 (~24GB显存)
### 480P 5s视频
*即将更新...*
### 720P 5s视频
*即将更新...*
---
## 表格说明
- **Wan2.1 Official(baseline)**: 基于[Wan2.1官方仓库](https://github.com/Wan-Video/Wan2.1)的基线实现
- **LightX2V_1**: 使用SageAttention2替换原生注意力机制,采用DIT BF16+FP32(部分敏感层)混合精度计算,在保持精度的同时提升计算效率
- **LightX2V_2**: 统一使用BF16精度计算,进一步减少显存占用和计算开销,同时保持生成质量
- **LightX2V_3**: 引入FP8量化技术显著减少计算精度要求,结合Tiling VAE技术优化显存使用
- **LightX2V_4**: 在LightX2V_3基础上加入TeaCache(teacache_thresh=0.2)缓存复用技术,通过智能跳过冗余计算实现最大加速
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment