manager.py 9.05 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
import torch
2
3
4
5
6
import threading
import queue
import time
from loguru import logger
from collections import OrderedDict
gushiqiao's avatar
gushiqiao committed
7
8


9
class WeightAsyncStreamManager(object):
10
11
    def __init__(self, blocks_num, offload_ratio=1, phases_num=1):
        self.active_weights = [None for _ in range(3)]
gushiqiao's avatar
gushiqiao committed
12
        self.compute_stream = torch.cuda.Stream(priority=-1)
13
14
        self.cpu_load_stream = torch.cuda.Stream(priority=0)
        self.cuda_load_stream = torch.cuda.Stream(priority=0)
15
        self.offload_block_num = int(offload_ratio * blocks_num)
16
17
        self.phases_num = phases_num
        self.offload_phases_num = blocks_num * phases_num * offload_ratio
gushiqiao's avatar
gushiqiao committed
18
19

    def prefetch_weights(self, block_idx, blocks_weights):
20
21
22
23
24
25
26
        with torch.cuda.stream(self.cuda_load_stream):
            self.active_weights[2] = blocks_weights[block_idx]
            self.active_weights[2].to_cuda_async()
        with torch.cuda.stream(self.cpu_load_stream):
            if block_idx < self.offload_block_num:
                if self.active_weights[1] is not None:
                    self.active_weights[1].to_cpu_async()
gushiqiao's avatar
gushiqiao committed
27
28
29

    def swap_weights(self):
        self.compute_stream.synchronize()
30
31
        self.cpu_load_stream.synchronize()
        self.cuda_load_stream.synchronize()
gushiqiao's avatar
gushiqiao committed
32
33

        self.active_weights[0], self.active_weights[1] = (
34
            self.active_weights[2],
gushiqiao's avatar
gushiqiao committed
35
36
            self.active_weights[0],
        )
37
38

    def prefetch_phase(self, block_idx, phase_idx, blocks):
39
        with torch.cuda.stream(self.cuda_load_stream):
40
41
            new_phase = blocks[block_idx].compute_phases[phase_idx]
            new_phase.to_cuda_async()
42
43
44
45
46
47
            self.active_weights[2] = (phase_idx, blocks[block_idx].compute_phases[phase_idx])
        with torch.cuda.stream(self.cpu_load_stream):
            if block_idx * self.phases_num + phase_idx < self.offload_phases_num:
                if self.active_weights[1] is not None:
                    _, old_phase = self.active_weights[1]
                    old_phase.to_cpu_async()
48
49
50

    def swap_phases(self):
        self.compute_stream.synchronize()
51
52
53
        self.cpu_load_stream.synchronize()
        self.cuda_load_stream.synchronize()
        self.active_weights[0], self.active_weights[1] = self.active_weights[2], self.active_weights[0]
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        self.active_weights[2] = None


class LazyWeightAsyncStreamManager(WeightAsyncStreamManager):
    def __init__(self, blocks_num, offload_ratio=1, phases_num=1, num_disk_workers=1, max_memory=2):
        super().__init__(blocks_num, offload_ratio, phases_num)
        self.worker_stop_event = threading.Event()
        self.pin_memory_buffer = MemoryBuffer(max_memory * (1024**3))
        self.disk_task_queue = queue.PriorityQueue()
        self.disk_workers = []
        self.release_workers = []
        self._start_disk_workers(num_disk_workers)
        self.initial_prefetch_done = False
        self.pending_tasks = {}
        self.task_lock = threading.Lock()
        self.last_used_time = {}
        self.time_lock = threading.Lock()

    def _start_disk_workers(self, num_workers):
        for i in range(num_workers):
            worker = threading.Thread(target=self._disk_worker_loop, daemon=True)
            worker.start()
            self.disk_workers.append(worker)

    def _disk_worker_loop(self):
        while not self.worker_stop_event.is_set():
            try:
                _, task = self.disk_task_queue.get(timeout=0.5)
                if task is None:
                    break

                block_idx, phase_idx, phase = task

                phase.load_from_disk()
                self.pin_memory_buffer.push((block_idx, phase_idx), phase)

                with self.task_lock:
                    if (block_idx, phase_idx) in self.pending_tasks:
                        del self.pending_tasks[(block_idx, phase_idx)]
            except queue.Empty:
                continue
            except Exception as e:
                logger.error(f"Disk worker thread error: {e}")

    def _async_prefetch_block(self, weights):
        next_block_idx = self.pin_memory_buffer.get_max_block_index()
        if next_block_idx < 0:
            next_block_idx = 0

        for phase_idx in range(self.phases_num):
            obj_key = (next_block_idx, phase_idx)

            if self.pin_memory_buffer.exists(obj_key) or (obj_key in self.pending_tasks):
                continue

            with self.task_lock:
                self.pending_tasks[obj_key] = True

            phase = weights.blocks[next_block_idx].compute_phases[phase_idx]

            priority_key = (next_block_idx, phase_idx)
            self.disk_task_queue.put((priority_key, (next_block_idx, phase_idx, phase)))

    def _sync_prefetch_block(self, weights):
        block_idx = 0
        while not self.pin_memory_buffer.is_nearly_full():
            for phase_idx in range(self.phases_num):
                phase = weights.blocks[block_idx].compute_phases[phase_idx]
                logger.info(f"Synchronous loading: block={block_idx}, phase={phase_idx}")
                phase.load_from_disk()
                self.pin_memory_buffer.push((block_idx, phase_idx), phase)
            block_idx += 1

    def prefetch_weights_from_disk(self, weights):
        if self.initial_prefetch_done:
            return

        self._sync_prefetch_block(weights)
        self.initial_prefetch_done = True

    def prefetch_phase(self, block_idx, phase_idx, blocks):
        obj_key = (block_idx, phase_idx)

        if not self.pin_memory_buffer.exists(obj_key):
            is_loading = False
            with self.task_lock:
                if obj_key in self.pending_tasks:
                    is_loading = True

            if is_loading:
                start_time = time.time()
                while not self.pin_memory_buffer.exists(obj_key):
                    time.sleep(0.001)
                    if time.time() - start_time > 5:
                        raise TimeoutError(f"Load timeout: block={block_idx}, phase={phase_idx}")
            else:
                logger.info("Not find prefetch block={block_idx}, phase={phase_idx} task. This is a bug.")

        with torch.cuda.stream(self.cuda_load_stream):
            phase = self.pin_memory_buffer.get(obj_key)
            phase.to_cuda_async()
            self.active_weights[2] = (obj_key, phase)

        with torch.cuda.stream(self.cpu_load_stream):
            if block_idx * self.phases_num + phase_idx < self.offload_phases_num:
                if self.active_weights[1] is not None:
                    old_key, old_phase = self.active_weights[1]
                    if self.pin_memory_buffer.exists(old_key):
                        old_phase.to_cpu_async()
                        self.pin_memory_buffer.pop(old_key)

    def shutdown(self):
        self.worker_stop_event.set()

        while not self.disk_task_queue.empty():
            try:
                self.disk_task_queue.get_nowait()
            except queue.Empty:
                continue

        for _ in self.disk_workers:
            self.disk_task_queue.put((0, None))

        for worker in self.disk_workers:
            worker.join(timeout=5)

        for worker in self.release_workers:
            worker.join(timeout=5)

        logger.info("All worker threads have been closed")


class MemoryBuffer:
    def __init__(self, max_memory_bytes=8 * (1024**3)):
        self.cache = OrderedDict()
        self.max_mem = max_memory_bytes
        self.used_mem = 0
        self.phases_size_map = {}
        self.lock = threading.Lock()
        self.insertion_order = []
        self.insertion_index = 0

    def push(self, key, phase_obj):
        with self.lock:
            if key in self.cache:
                return
            _, phase_idx = key
            if phase_idx not in self.phases_size_map:
                self.phases_size_map[phase_idx] = phase_obj.calculate_size()
            size = self.phases_size_map[phase_idx]

            self.cache[key] = (size, phase_obj, self.insertion_index)
            self.insertion_order.append((key, self.insertion_index))
            self.insertion_index += 1
            self.used_mem += size

    def _remove_key(self, key):
        if key in self.cache:
            size, phase, idx = self.cache.pop(key)
            try:
                phase.clear()
            except Exception as e:
                logger.info(f"Error clearing phase: {e}")
            self.used_mem -= size

            self.insertion_order = [(k, i) for (k, i) in self.insertion_order if k != key]

    def get(self, key, default=None):
        with self.lock:
            if key in self.cache:
                size, phase, idx = self.cache[key]
                return phase
        return default

    def exists(self, key):
        with self.lock:
            return key in self.cache

    def pop(self, key):
        with self.lock:
            if key in self.cache:
                self._remove_key(key)
                return True
        return False

    def is_nearly_full(self):
        with self.lock:
            return self.used_mem >= self.max_mem * 0.9

    def get_max_block_index(self):
        with self.lock:
            if not self.cache:
                return -1
gushiqiao's avatar
gushiqiao committed
247
            return (list(self.cache.keys())[-1][0] + 1) % 40