model.py 28.9 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
3
# 1. 标准库导入
import gc
helloyongyang's avatar
helloyongyang committed
4
5
import math
import os
6
7
import sys
from pathlib import Path
PengGao's avatar
PengGao committed
8

9
# 2. 第三方库导入
helloyongyang's avatar
helloyongyang committed
10
11
12
import torch
import torch.nn as nn
import torch.nn.functional as F
root's avatar
root committed
13
from loguru import logger
14

15
16
17
18
19
20
21
22
23
24
25
26
27
current_dir = Path(__file__).resolve().parent
project_root = current_dir.parent.parent.parent.parent.parent.parent
if str(project_root) not in sys.path:
    sys.path.insert(0, str(project_root))

from lightx2v.common.modules.weight_module import WeightModule, WeightModuleList  # noqa E402
from lightx2v.common.offload.manager import WeightAsyncStreamManager  # noqa E402
from lightx2v.common.ops import *  # noqa E402
from lightx2v.models.input_encoders.hf.q_linear import (  # noqa E402
    Q8FQuantLinearFp8,  # noqa E402
    Q8FQuantLinearInt8,  # noqa E402
    SglQuantLinearFp8,  # noqa E402
    TorchaoQuantLinearInt8,  # noqa E402
Kane's avatar
Kane committed
28
29
    VllmQuantLinearInt8,  # noqa E402,
    MluQuantLinearInt8,
30
31
32
33
34
35
36
37
38
)
from lightx2v.models.input_encoders.hf.wan.t5.tokenizer import HuggingfaceTokenizer  # noqa E402
from lightx2v.utils.envs import *  # noqa E402
from lightx2v.utils.registry_factory import (  # noqa E402
    EMBEDDING_WEIGHT_REGISTER,  # noqa E402
    MM_WEIGHT_REGISTER,  # noqa E402
    RMS_WEIGHT_REGISTER,  # noqa E402
)
from lightx2v.utils.utils import load_weights  # noqa E402
helloyongyang's avatar
helloyongyang committed
39
40
41
42
43
44
45
46
47

__all__ = [
    "T5Model",
    "T5Encoder",
    "T5Decoder",
    "T5EncoderModel",
]


48
49
50
51
class T5OffloadBlocksWeights(WeightModule):
    def __init__(self, block_nums, mm_type):
        super().__init__()
        self.block_nums = block_nums
52
        self.offload_block_buffers = WeightModuleList([T5OffloadSelfAttention(i, mm_type, create_cuda_buffer=True) for i in range(2)])
53
        self.blocks = WeightModuleList([T5OffloadSelfAttention(i, mm_type) for i in range(block_nums)])
54
        self.add_module("offload_block_buffers", self.offload_block_buffers)
55
56
57
58
        self.add_module("blocks", self.blocks)


class T5OffloadSelfAttention(WeightModule):
59
    def __init__(self, block_index, mm_type, block_prefix="blocks", create_cuda_buffer=False):
60
61
62
63
64
65
66
67
        super().__init__()
        self.block_index = block_index
        if mm_type is None:
            mm_type = "Default"
        self.mm_type = mm_type

        self.add_module(
            "norm1",
68
            RMS_WEIGHT_REGISTER["sgl-kernel"](f"{block_prefix}.{self.block_index}.norm1.weight", create_cuda_buffer),
69
70
71
        )
        self.add_module(
            "norm2",
72
            RMS_WEIGHT_REGISTER["sgl-kernel"](f"{block_prefix}.{self.block_index}.norm2.weight", create_cuda_buffer),
73
74
75
        )
        self.add_module(
            "pos_embedding",
76
            EMBEDDING_WEIGHT_REGISTER["Default"](f"{block_prefix}.{self.block_index}.pos_embedding.embedding.weight", create_cuda_buffer),
77
78
79
80
        )

        self.compute_phases = WeightModuleList(
            [
81
82
                T5OffloadAttention(block_index, block_prefix, mm_type, create_cuda_buffer),
                T5OffloadFeedForward(block_index, block_prefix, mm_type, create_cuda_buffer),
83
84
85
86
87
88
            ]
        )
        self.add_module("compute_phases", self.compute_phases)


class T5OffloadAttention(WeightModule):
89
    def __init__(self, block_index, block_prefix, mm_type, create_cuda_buffer=False):
90
91
92
93
94
        super().__init__()
        self.block_index = block_index
        self.mm_type = mm_type
        self.add_module(
            "attn_q",
95
            MM_WEIGHT_REGISTER[self.mm_type](f"{block_prefix}.{self.block_index}.attn.q.weight", None, create_cuda_buffer),
96
97
98
        )
        self.add_module(
            "attn_k",
99
            MM_WEIGHT_REGISTER[self.mm_type](f"{block_prefix}.{self.block_index}.attn.k.weight", None, create_cuda_buffer),
100
101
102
        )
        self.add_module(
            "attn_v",
103
            MM_WEIGHT_REGISTER[self.mm_type](f"{block_prefix}.{self.block_index}.attn.v.weight", None, create_cuda_buffer),
104
105
106
        )
        self.add_module(
            "attn_o",
107
            MM_WEIGHT_REGISTER[self.mm_type](f"{block_prefix}.{self.block_index}.attn.o.weight", None, create_cuda_buffer),
108
109
110
111
        )


class T5OffloadFeedForward(WeightModule):
112
    def __init__(self, block_index, block_prefix, mm_type, create_cuda_buffer=False):
113
114
115
116
117
118
        super().__init__()
        self.block_index = block_index
        self.mm_type = mm_type

        self.add_module(
            "ffn_fc1",
119
            MM_WEIGHT_REGISTER[self.mm_type](f"{block_prefix}.{self.block_index}.ffn.fc1.weight", None, create_cuda_buffer),
120
121
122
        )
        self.add_module(
            "ffn_fc2",
123
            MM_WEIGHT_REGISTER[self.mm_type](f"{block_prefix}.{self.block_index}.ffn.fc2.weight", None, create_cuda_buffer),
124
125
126
        )
        self.add_module(
            "ffn_gate_0",
127
            MM_WEIGHT_REGISTER[self.mm_type](f"{block_prefix}.{self.block_index}.ffn.gate.0.weight", None, create_cuda_buffer),
128
129
130
131
        )
        self.gelu = GELU()


helloyongyang's avatar
helloyongyang committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
def fp16_clamp(x):
    if x.dtype == torch.float16 and torch.isinf(x).any():
        clamp = torch.finfo(x.dtype).max - 1000
        x = torch.clamp(x, min=-clamp, max=clamp)
    return x


def init_weights(m):
    if isinstance(m, T5LayerNorm):
        nn.init.ones_(m.weight)
    elif isinstance(m, T5Model):
        nn.init.normal_(m.token_embedding.weight, std=1.0)
    elif isinstance(m, T5FeedForward):
        nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5)
        nn.init.normal_(m.fc1.weight, std=m.dim**-0.5)
        nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5)
    elif isinstance(m, T5Attention):
        nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn) ** -0.5)
        nn.init.normal_(m.k.weight, std=m.dim**-0.5)
        nn.init.normal_(m.v.weight, std=m.dim**-0.5)
        nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn) ** -0.5)
    elif isinstance(m, T5RelativeEmbedding):
Dongz's avatar
Dongz committed
154
        nn.init.normal_(m.embedding.weight, std=(2 * m.num_buckets * m.num_heads) ** -0.5)
helloyongyang's avatar
helloyongyang committed
155
156
157
158


class GELU(nn.Module):
    def forward(self, x):
Dongz's avatar
Dongz committed
159
        return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
helloyongyang's avatar
helloyongyang committed
160
161
162


class T5LayerNorm(nn.Module):
gushiqiao's avatar
gushiqiao committed
163
    def __init__(self, dim, eps=1e-6, dtype=torch.float16):
helloyongyang's avatar
helloyongyang committed
164
165
166
        super(T5LayerNorm, self).__init__()
        self.dim = dim
        self.eps = eps
gushiqiao's avatar
gushiqiao committed
167
        self.weight = nn.Parameter(torch.ones(dim, dtype=dtype))
helloyongyang's avatar
helloyongyang committed
168
169
170
171
172
173
174
175
176

    def forward(self, x):
        x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) + self.eps)
        if self.weight.dtype in [torch.float16, torch.bfloat16]:
            x = x.type_as(self.weight)
        return self.weight * x


class T5Attention(nn.Module):
177
178
179
180
181
182
183
184
185
186
    def __init__(
        self,
        dim,
        dim_attn,
        num_heads,
        dropout=0.1,
        quantized=False,
        quant_scheme=None,
        dtype=torch.bfloat16,
    ):
helloyongyang's avatar
helloyongyang committed
187
188
189
190
191
192
193
        assert dim_attn % num_heads == 0
        super(T5Attention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.num_heads = num_heads
        self.head_dim = dim_attn // num_heads

194
        if quantized:
gushiqiao's avatar
gushiqiao committed
195
            if quant_scheme in ["int8", "int8-vllm"]:
gushiqiao's avatar
gushiqiao committed
196
                linear_cls = VllmQuantLinearInt8
gushiqiao's avatar
gushiqiao committed
197
            elif quant_scheme in ["fp8", "fp8-sgl"]:
198
                linear_cls = SglQuantLinearFp8
gushiqiao's avatar
gushiqiao committed
199
200
            elif quant_scheme == "int8-torchao":
                linear_cls = TorchaoQuantLinearInt8
gushiqiao's avatar
gushiqiao committed
201
202
203
204
            elif quant_scheme == "int8-q8f":
                linear_cls = Q8FQuantLinearInt8
            elif quant_scheme == "fp8-q8f":
                linear_cls = Q8FQuantLinearFp8
Kane's avatar
Kane committed
205
206
            elif quant_scheme == "int8-tmo":
                linear_cls = MluQuantLinearInt8
gushiqiao's avatar
gushiqiao committed
207
208
            else:
                NotImplementedError(f"Unsupported T5 quant scheme: {quant_scheme}")
209
210
211
        else:
            linear_cls = nn.Linear

helloyongyang's avatar
helloyongyang committed
212
        # layers
gushiqiao's avatar
gushiqiao committed
213
214
215
216
        self.q = linear_cls(dim, dim_attn, bias=False, dtype=dtype)
        self.k = linear_cls(dim, dim_attn, bias=False, dtype=dtype)
        self.v = linear_cls(dim, dim_attn, bias=False, dtype=dtype)
        self.o = linear_cls(dim_attn, dim, bias=False, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, context=None, mask=None, pos_bias=None):
        """
        x:          [B, L1, C].
        context:    [B, L2, C] or None.
        mask:       [B, L2] or [B, L1, L2] or None.
        """
        # check inputs
        context = x if context is None else context
        b, n, c = x.size(0), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.q(x).view(b, -1, n, c)
        k = self.k(context).view(b, -1, n, c)
        v = self.v(context).view(b, -1, n, c)

        # attention bias
        attn_bias = x.new_zeros(b, n, q.size(1), k.size(1))
        if pos_bias is not None:
            attn_bias += pos_bias
        if mask is not None:
            assert mask.ndim in [2, 3]
            mask = mask.view(b, 1, 1, -1) if mask.ndim == 2 else mask.unsqueeze(1)
            attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min)

        # compute attention (T5 does not use scaling)
        attn = torch.einsum("binc,bjnc->bnij", q, k) + attn_bias
245
        attn = F.softmax(attn.float(), dim=-1).type_as(attn)
helloyongyang's avatar
helloyongyang committed
246
247
248
        x = torch.einsum("bnij,bjnc->binc", attn, v)
        x = x.reshape(b, -1, n * c)
        x = self.o(x)
249

helloyongyang's avatar
helloyongyang committed
250
251
252
253
        return x


class T5FeedForward(nn.Module):
254
255
256
257
258
259
260
261
262
    def __init__(
        self,
        dim,
        dim_ffn,
        dropout=0.1,
        quantized=False,
        quant_scheme=None,
        dtype=torch.bfloat16,
    ):
helloyongyang's avatar
helloyongyang committed
263
264
265
266
        super(T5FeedForward, self).__init__()
        self.dim = dim
        self.dim_ffn = dim_ffn

267
        if quantized:
gushiqiao's avatar
gushiqiao committed
268
            if quant_scheme in ["int8", "int8-vllm"]:
gushiqiao's avatar
gushiqiao committed
269
                linear_cls = VllmQuantLinearInt8
gushiqiao's avatar
gushiqiao committed
270
            elif quant_scheme in ["fp8", "fp8-sgl"]:
271
                linear_cls = SglQuantLinearFp8
gushiqiao's avatar
gushiqiao committed
272
273
            elif quant_scheme == "int8-torchao":
                linear_cls = TorchaoQuantLinearInt8
gushiqiao's avatar
gushiqiao committed
274
275
276
277
            elif quant_scheme == "int8-q8f":
                linear_cls = Q8FQuantLinearInt8
            elif quant_scheme == "fp8-q8f":
                linear_cls = Q8FQuantLinearFp8
Kane's avatar
Kane committed
278
279
            elif quant_scheme == "int8-tmo":
                linear_cls = MluQuantLinearInt8
gushiqiao's avatar
gushiqiao committed
280
281
            else:
                NotImplementedError(f"Unsupported T5 quant scheme: {quant_scheme}")
282
283
        else:
            linear_cls = nn.Linear
helloyongyang's avatar
helloyongyang committed
284
        # layers
gushiqiao's avatar
gushiqiao committed
285
        self.gate = nn.Sequential(linear_cls(dim, dim_ffn, bias=False, dtype=dtype), GELU())
286

gushiqiao's avatar
gushiqiao committed
287
288
        self.fc1 = linear_cls(dim, dim_ffn, bias=False, dtype=dtype)
        self.fc2 = linear_cls(dim_ffn, dim, bias=False, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
289
290
291
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
292
        x = self.fc1(x) * self.gate(x)
helloyongyang's avatar
helloyongyang committed
293
294
295
296
297
298
299
        x = self.dropout(x)
        x = self.fc2(x)
        x = self.dropout(x)
        return x


class T5SelfAttention(nn.Module):
300
301
302
303
304
305
306
307
308
309
310
311
312
    def __init__(
        self,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
        quantized=False,
        quant_scheme=None,
        dtype=torch.bfloat16,
    ):
helloyongyang's avatar
helloyongyang committed
313
314
315
316
317
318
319
320
321
        super(T5SelfAttention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
gushiqiao's avatar
gushiqiao committed
322
323
324
325
326
        self.norm1 = T5LayerNorm(dim, dtype=dtype)
        self.attn = T5Attention(dim, dim_attn, num_heads, dropout, quantized, quant_scheme, dtype)
        self.norm2 = T5LayerNorm(dim, dtype=dtype)
        self.ffn = T5FeedForward(dim, dim_ffn, dropout, quantized, quant_scheme, dtype=dtype)
        self.pos_embedding = None if shared_pos else T5RelativeEmbedding(num_buckets, num_heads, bidirectional=True, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
327
328
329

    def forward(self, x, mask=None, pos_bias=None):
        e = pos_bias if self.shared_pos else self.pos_embedding(x.size(1), x.size(1))
330
331
        x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e))
        x = fp16_clamp(x + self.ffn(self.norm2(x)))
gushiqiao's avatar
gushiqiao committed
332

helloyongyang's avatar
helloyongyang committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        return x


class T5CrossAttention(nn.Module):
    def __init__(
        self,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
    ):
        super(T5CrossAttention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
        self.norm1 = T5LayerNorm(dim)
        self.self_attn = T5Attention(dim, dim_attn, num_heads, dropout)
        self.norm2 = T5LayerNorm(dim)
        self.cross_attn = T5Attention(dim, dim_attn, num_heads, dropout)
        self.norm3 = T5LayerNorm(dim)
        self.ffn = T5FeedForward(dim, dim_ffn, dropout)
Dongz's avatar
Dongz committed
362
        self.pos_embedding = None if shared_pos else T5RelativeEmbedding(num_buckets, num_heads, bidirectional=False)
helloyongyang's avatar
helloyongyang committed
363

Dongz's avatar
Dongz committed
364
    def forward(self, x, mask=None, encoder_states=None, encoder_mask=None, pos_bias=None):
helloyongyang's avatar
helloyongyang committed
365
366
        e = pos_bias if self.shared_pos else self.pos_embedding(x.size(1), x.size(1))
        x = fp16_clamp(x + self.self_attn(self.norm1(x), mask=mask, pos_bias=e))
Dongz's avatar
Dongz committed
367
        x = fp16_clamp(x + self.cross_attn(self.norm2(x), context=encoder_states, mask=encoder_mask))
helloyongyang's avatar
helloyongyang committed
368
369
370
371
372
        x = fp16_clamp(x + self.ffn(self.norm3(x)))
        return x


class T5RelativeEmbedding(nn.Module):
gushiqiao's avatar
gushiqiao committed
373
    def __init__(self, num_buckets, num_heads, bidirectional, dtype=torch.bfloat16, max_dist=128):
helloyongyang's avatar
helloyongyang committed
374
375
376
377
378
379
380
        super(T5RelativeEmbedding, self).__init__()
        self.num_buckets = num_buckets
        self.num_heads = num_heads
        self.bidirectional = bidirectional
        self.max_dist = max_dist

        # layers
gushiqiao's avatar
gushiqiao committed
381
        self.embedding = nn.Embedding(num_buckets, num_heads, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
382
383
384
385
386

    def forward(self, lq, lk):
        device = self.embedding.weight.device
        # rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \
        #     torch.arange(lq).unsqueeze(1).to(device)
Dongz's avatar
Dongz committed
387
        rel_pos = torch.arange(lk, device=device).unsqueeze(0) - torch.arange(lq, device=device).unsqueeze(1)
helloyongyang's avatar
helloyongyang committed
388
        rel_pos = self._relative_position_bucket(rel_pos)
389

helloyongyang's avatar
helloyongyang committed
390
        rel_pos_embeds = self.embedding(rel_pos)
391

helloyongyang's avatar
helloyongyang committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
        rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze(0)  # [1, N, Lq, Lk]
        return rel_pos_embeds.contiguous()

    def _relative_position_bucket(self, rel_pos):
        # preprocess
        if self.bidirectional:
            num_buckets = self.num_buckets // 2
            rel_buckets = (rel_pos > 0).long() * num_buckets
            rel_pos = torch.abs(rel_pos)
        else:
            num_buckets = self.num_buckets
            rel_buckets = 0
            rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos))

        # embeddings for small and large positions
        max_exact = num_buckets // 2
Dongz's avatar
Dongz committed
408
409
        rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) / math.log(self.max_dist / max_exact) * (num_buckets - max_exact)).long()
        rel_pos_large = torch.min(rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1))
helloyongyang's avatar
helloyongyang committed
410
411
412
413
414
        rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large)
        return rel_buckets


class T5Encoder(nn.Module):
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
    def __init__(
        self,
        dtype,
        vocab,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        num_layers,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
        cpu_offload=False,
        quantized=False,
        quant_scheme=None,
    ):
helloyongyang's avatar
helloyongyang committed
431
        super(T5Encoder, self).__init__()
432
        self.cpu_offload = cpu_offload
helloyongyang's avatar
helloyongyang committed
433
434
435
436
437
438
439
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos
440
        self.quant_scheme = quant_scheme
helloyongyang's avatar
helloyongyang committed
441
442

        # layers
gushiqiao's avatar
gushiqiao committed
443
444
        self.token_embedding = vocab.to(dtype) if isinstance(vocab, nn.Embedding) else nn.Embedding(vocab, dim, dtype=dtype)
        self.pos_embedding = T5RelativeEmbedding(num_buckets, num_heads, bidirectional=True, dtype=dtype) if shared_pos else None
helloyongyang's avatar
helloyongyang committed
445
        self.dropout = nn.Dropout(dropout)
gushiqiao's avatar
gushiqiao committed
446
447

        if cpu_offload:
448
            self.offload_manager = WeightAsyncStreamManager(offload_granularity="block")
449
            self.blocks_weights = T5OffloadBlocksWeights(num_layers, quant_scheme)
450
            self.offload_manager.init_cuda_buffer(self.blocks_weights.offload_block_buffers, None)
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
            self.blocks = self.blocks_weights.blocks
        else:
            self.blocks = nn.ModuleList(
                [
                    T5SelfAttention(
                        dim,
                        dim_attn,
                        dim_ffn,
                        num_heads,
                        num_buckets,
                        shared_pos,
                        dropout,
                        quantized,
                        quant_scheme,
                        dtype,
                    )
                    for _ in range(num_layers)
                ]
            )
helloyongyang's avatar
helloyongyang committed
470

471
        self.norm = T5LayerNorm(dim, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
472

473
    def forward_without_offload(self, ids, mask=None):
helloyongyang's avatar
helloyongyang committed
474
475
476
        x = self.token_embedding(ids)
        x = self.dropout(x)
        e = self.pos_embedding(x.size(1), x.size(1)) if self.shared_pos else None
gushiqiao's avatar
gushiqiao committed
477
478

        for i, block in enumerate(self.blocks):
helloyongyang's avatar
helloyongyang committed
479
480
            x = block(x, mask, pos_bias=e)
        x = self.norm(x)
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
        x = self.dropout(x)
        return x.to(GET_DTYPE())

    def forword_attn_with_offload(self, x, attn_phase, context=None, mask=None, pos_bias=None):
        context = x if context is None else context
        b, n, c = x.size(0), self.num_heads, self.dim_attn // self.num_heads
        # compute query, key, value
        q = attn_phase.attn_q.apply(x.squeeze(0)).view(b, -1, n, c)
        k = attn_phase.attn_k.apply(context.squeeze(0)).view(b, -1, n, c)
        v = attn_phase.attn_v.apply(context.squeeze(0)).view(b, -1, n, c)
        # attention bias
        attn_bias = x.new_zeros(b, n, q.size(1), k.size(1))
        if pos_bias is not None:
            attn_bias += pos_bias
        if mask is not None:
            assert mask.ndim in [2, 3]
            mask = mask.view(b, 1, 1, -1) if mask.ndim == 2 else mask.unsqueeze(1)
            attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min)

        # compute attention (T5 does not use scaling)
        attn = torch.einsum("binc,bjnc->bnij", q, k) + attn_bias
        attn = F.softmax(attn.float(), dim=-1).type_as(attn)
        x = torch.einsum("bnij,bjnc->binc", attn, v)
        x = x.reshape(b, -1, n * c)
        x = attn_phase.attn_o.apply(x.squeeze(0)).unsqueeze(0)
        return x

    def forward_ffn_with_offload(self, x, ffn_phase):
        x = x.squeeze(0)
        x = ffn_phase.ffn_fc1.apply(x) * ffn_phase.gelu(ffn_phase.ffn_gate_0.apply(x))
        x = ffn_phase.ffn_fc2.apply(x)
        return x.unsqueeze(0)

    def forward_block_with_offload(self, block, x, mask=None, pos_bias=None):
        if self.shared_pos:
            e = pos_bias
        else:
            lq, lk = x.size(1), x.size(1)
            rel_pos = torch.arange(lk, device="cuda").unsqueeze(0) - torch.arange(lq, device="cuda").unsqueeze(1)
            num_buckets = block.pos_embedding.weight.shape[0] // 2
            rel_buckets = (rel_pos > 0).long() * num_buckets
            rel_pos = torch.abs(rel_pos)
            max_exact = num_buckets // 2
            rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) / math.log(128 / max_exact) * (num_buckets - max_exact)).long()
            rel_pos_large = torch.min(rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1))
            rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large)
            e = block.pos_embedding.apply(rel_buckets).permute(2, 0, 1).unsqueeze(0).contiguous()

        norm1_out = block.norm1.apply(x)
        x = fp16_clamp(x + self.forword_attn_with_offload(norm1_out, block.compute_phases[0], mask=mask, pos_bias=e))
        norm2_out = block.norm2.apply(x)
        x = fp16_clamp(x + self.forward_ffn_with_offload(norm2_out, block.compute_phases[1]))
        return x

    def forward_with_offload(self, ids, mask=None):
        self.token_embedding = self.token_embedding.to("cuda")
        self.pos_embedding = self.pos_embedding.to("cuda") if self.pos_embedding is not None else None

        x = self.token_embedding(ids)
        x = self.dropout(x)
        e = self.pos_embedding(x.size(1), x.size(1)) if self.shared_pos else None
        self.norm = self.norm.to("cuda")

        for block_idx in range(len(self.blocks)):
            self.block_idx = block_idx
            if block_idx == 0:
547
548
549
550
                self.offload_manager.cuda_buffers[0].load_state_dict(
                    self.blocks[block_idx].state_dict(),
                    block_idx,
                )
gushiqiao's avatar
gushiqiao committed
551

552
            if block_idx < len(self.blocks) - 1:
553
                self.offload_manager.prefetch_weights(block_idx + 1, self.blocks)
554

555
556
            with torch.cuda.stream(self.offload_manager.compute_stream):
                x = self.forward_block_with_offload(self.offload_manager.cuda_buffers[0], x, mask, pos_bias=e)
557
            self.offload_manager.swap_blocks()
558
559

        x = self.norm(x)
helloyongyang's avatar
helloyongyang committed
560
        x = self.dropout(x)
561
        return x.to(GET_DTYPE())
helloyongyang's avatar
helloyongyang committed
562

563
564
565
566
567
568
    def forward(self, ids, mask=None):
        if self.cpu_offload:
            return self.forward_with_offload(ids, mask)
        else:
            return self.forward_without_offload(ids, mask)

helloyongyang's avatar
helloyongyang committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592

class T5Decoder(nn.Module):
    def __init__(
        self,
        vocab,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        num_layers,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
    ):
        super(T5Decoder, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
Dongz's avatar
Dongz committed
593
594
        self.token_embedding = vocab if isinstance(vocab, nn.Embedding) else nn.Embedding(vocab, dim)
        self.pos_embedding = T5RelativeEmbedding(num_buckets, num_heads, bidirectional=False) if shared_pos else None
helloyongyang's avatar
helloyongyang committed
595
        self.dropout = nn.Dropout(dropout)
Dongz's avatar
Dongz committed
596
        self.blocks = nn.ModuleList([T5CrossAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos, dropout) for _ in range(num_layers)])
helloyongyang's avatar
helloyongyang committed
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
        self.norm = T5LayerNorm(dim)

        # initialize weights
        self.apply(init_weights)

    def forward(self, ids, mask=None, encoder_states=None, encoder_mask=None):
        b, s = ids.size()

        # causal mask
        if mask is None:
            mask = torch.tril(torch.ones(1, s, s).to(ids.device))
        elif mask.ndim == 2:
            mask = torch.tril(mask.unsqueeze(1).expand(-1, s, -1))

        # layers
        x = self.token_embedding(ids)
        x = self.dropout(x)
        e = self.pos_embedding(x.size(1), x.size(1)) if self.shared_pos else None
        for block in self.blocks:
            x = block(x, mask, encoder_states, encoder_mask, pos_bias=e)
        x = self.norm(x)
        x = self.dropout(x)
        return x


class T5Model(nn.Module):
    def __init__(
        self,
        vocab_size,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        encoder_layers,
        decoder_layers,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
    ):
        super(T5Model, self).__init__()
        self.vocab_size = vocab_size
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.encoder_layers = encoder_layers
        self.decoder_layers = decoder_layers
        self.num_buckets = num_buckets

        # layers
        self.token_embedding = nn.Embedding(vocab_size, dim)
        self.encoder = T5Encoder(
            self.token_embedding,
            dim,
            dim_attn,
            dim_ffn,
            num_heads,
            encoder_layers,
            num_buckets,
            shared_pos,
            dropout,
        )
        self.decoder = T5Decoder(
            self.token_embedding,
            dim,
            dim_attn,
            dim_ffn,
            num_heads,
            decoder_layers,
            num_buckets,
            shared_pos,
            dropout,
        )
        self.head = nn.Linear(dim, vocab_size, bias=False)

        # initialize weights
        self.apply(init_weights)

    def forward(self, encoder_ids, encoder_mask, decoder_ids, decoder_mask):
        x = self.encoder(encoder_ids, encoder_mask)
        x = self.decoder(decoder_ids, decoder_mask, x, encoder_mask)
        x = self.head(x)
        return x


def _t5(
    name,
    encoder_only=False,
    decoder_only=False,
    return_tokenizer=False,
    tokenizer_kwargs={},
    dtype=torch.float32,
    device="cpu",
    **kwargs,
):
    # sanity check
    assert not (encoder_only and decoder_only)

    # params
    if encoder_only:
        model_cls = T5Encoder
        kwargs["vocab"] = kwargs.pop("vocab_size")
        kwargs["num_layers"] = kwargs.pop("encoder_layers")
        _ = kwargs.pop("decoder_layers")
    elif decoder_only:
        model_cls = T5Decoder
        kwargs["vocab"] = kwargs.pop("vocab_size")
        kwargs["num_layers"] = kwargs.pop("decoder_layers")
        _ = kwargs.pop("encoder_layers")
    else:
        model_cls = T5Model

    # init model
    with torch.device(device):
gushiqiao's avatar
gushiqiao committed
711
        model = model_cls(dtype=dtype, **kwargs)
helloyongyang's avatar
helloyongyang committed
712
713

    # set device
gushiqiao's avatar
gushiqiao committed
714
    model = model.to(device=device)
715
    return model
helloyongyang's avatar
helloyongyang committed
716
717


718
719
720
721
722
723
724
725
726
def split_block_weights(weights):
    block_weights = {}
    all_keys = list(weights.keys())
    for key in all_keys:
        if key.startswith(("blocks.")):
            block_weights[key] = weights.pop(key)
    return block_weights


helloyongyang's avatar
helloyongyang committed
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
def umt5_xxl(**kwargs):
    cfg = dict(
        vocab_size=256384,
        dim=4096,
        dim_attn=4096,
        dim_ffn=10240,
        num_heads=64,
        encoder_layers=24,
        decoder_layers=24,
        num_buckets=32,
        shared_pos=False,
        dropout=0.1,
    )
    cfg.update(**kwargs)
    return _t5("umt5-xxl", **cfg)


class T5EncoderModel:
    def __init__(
        self,
        text_len,
        dtype=torch.bfloat16,
Kane's avatar
Kane committed
749
        device=torch.device("cuda"),
helloyongyang's avatar
helloyongyang committed
750
751
752
        checkpoint_path=None,
        tokenizer_path=None,
        shard_fn=None,
753
        cpu_offload=False,
754
755
756
        t5_quantized=False,
        t5_quantized_ckpt=None,
        quant_scheme=None,
757
        load_from_rank0=False,
helloyongyang's avatar
helloyongyang committed
758
759
760
761
    ):
        self.text_len = text_len
        self.dtype = dtype
        self.device = device
762
763
764
765
        if t5_quantized_ckpt is not None and t5_quantized:
            self.checkpoint_path = t5_quantized_ckpt
        else:
            self.checkpoint_path = checkpoint_path
helloyongyang's avatar
helloyongyang committed
766
        self.tokenizer_path = tokenizer_path
767
768
769

        # sync cpu offload
        self.cpu_offload = cpu_offload
helloyongyang's avatar
helloyongyang committed
770

771
772
773
774
775
776
        model = (
            umt5_xxl(
                encoder_only=True,
                return_tokenizer=False,
                dtype=dtype,
                device=device,
777
                cpu_offload=cpu_offload,
778
779
                quantized=t5_quantized,
                quant_scheme=quant_scheme,
780
781
782
783
            )
            .eval()
            .requires_grad_(False)
        )
784

785
786
787
788
789
        weights_dict = load_weights(
            self.checkpoint_path,
            cpu_offload=cpu_offload,
            load_from_rank0=load_from_rank0,
        )
gushiqiao's avatar
gushiqiao committed
790

791
792
793
794
795
796
797
798
799
        if cpu_offload:
            block_weights_dict = split_block_weights(weights_dict)
            model.blocks_weights.load(block_weights_dict)
            del block_weights_dict
            gc.collect()

        model.load_state_dict(weights_dict)
        del weights_dict
        gc.collect()
helloyongyang's avatar
helloyongyang committed
800
801
802
803
804
805
        self.model = model
        if shard_fn is not None:
            self.model = shard_fn(self.model, sync_module_states=False)
        else:
            self.model.to(self.device)
        # init tokenizer
Dongz's avatar
Dongz committed
806
        self.tokenizer = HuggingfaceTokenizer(name=tokenizer_path, seq_len=text_len, clean="whitespace")
helloyongyang's avatar
helloyongyang committed
807

808
    def infer(self, texts):
helloyongyang's avatar
helloyongyang committed
809
        ids, mask = self.tokenizer(texts, return_mask=True, add_special_tokens=True)
Kane's avatar
Kane committed
810
811
        ids = ids.to(self.device)
        mask = mask.to(self.device)
helloyongyang's avatar
helloyongyang committed
812
        seq_lens = mask.gt(0).sum(dim=1).long()
gushiqiao's avatar
gushiqiao committed
813
814
815

        with torch.no_grad():
            context = self.model(ids, mask)
TorynCurtis's avatar
TorynCurtis committed
816

helloyongyang's avatar
helloyongyang committed
817
818
819
820
        return [u[:v] for u, v in zip(context, seq_lens)]


if __name__ == "__main__":
821
822
    import time

823
    checkpoint_dir = ""
824
825
    t5_checkpoint = "models_t5_umt5-xxl-enc-bf16.pth"
    t5_tokenizer = "google/umt5-xxl"
826

827
    cpu_offload = False
828
829
830
831
832
    if cpu_offload:
        device = torch.device("cpu")
    else:
        device = torch.device("cuda")

helloyongyang's avatar
helloyongyang committed
833
834
835
    model = T5EncoderModel(
        text_len=512,
        dtype=torch.bfloat16,
836
        device=device,
helloyongyang's avatar
helloyongyang committed
837
838
839
        checkpoint_path=os.path.join(checkpoint_dir, t5_checkpoint),
        tokenizer_path=os.path.join(checkpoint_dir, t5_tokenizer),
        shard_fn=None,
840
        cpu_offload=cpu_offload,
helloyongyang's avatar
helloyongyang committed
841
842
    )
    text = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
843
844
845

    torch.cuda.synchronize()
    s_t = time.time()
helloyongyang's avatar
helloyongyang committed
846
    outputs = model.infer(text)
847
848
849
850
851

    torch.cuda.synchronize()
    e_t = time.time()

    logger.info(e_t - s_t)
root's avatar
root committed
852
    logger.info(outputs)