pipeline.py 11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import os

os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
os.environ["DTYPE"] = "BF16"
os.environ["SENSITIVE_LAYER_DTYPE"] = "None"
os.environ["PROFILING_DEBUG_LEVEL"] = "2"

import json

import torch
import torch.distributed as dist
from loguru import logger

from lightx2v.models.runners.wan.wan_sf_runner import WanSFRunner  # noqa: F401
from lightx2v.models.runners.wan.wan_vace_runner import WanVaceRunner  # noqa: F401
from lightx2v.utils.input_info import set_input_info
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.utils.set_config import print_config, set_config, set_parallel_config
from lightx2v.utils.utils import seed_all


def dict_like(cls):
    cls.__getitem__ = lambda self, key: getattr(self, key)
    cls.__setitem__ = lambda self, key, value: setattr(self, key, value)
    cls.__delitem__ = lambda self, key: delattr(self, key)
    cls.__contains__ = lambda self, key: hasattr(self, key)

    def update(self, *args, **kwargs):
        for arg in args:
            if isinstance(arg, dict):
                items = arg.items()
            else:
                items = arg
            for k, v in items:
                setattr(self, k, v)
        for k, v in kwargs.items():
            setattr(self, k, v)

    def get(self, key, default=None):
        return getattr(self, key, default)

    cls.get = get
    cls.update = update

    return cls


@dict_like
class LightX2VPipeline:
    def __init__(
        self,
        task,
        model_path,
        model_cls,
        image_path=None,
        last_frame_path=None,
        audio_path=None,
        sf_model_path=None,
        src_ref_images=None,
        src_video=None,
        src_mask=None,
        dit_original_ckpt=None,
        low_noise_original_ckpt=None,
        high_noise_original_ckpt=None,
        transformer_model_name=None,
    ):
        self.task = task
        self.model_path = model_path
        self.model_cls = model_cls
        self.sf_model_path = sf_model_path
        self.image_path = image_path
        self.last_frame_path = last_frame_path
        self.audio_path = audio_path
        self.src_ref_images = src_ref_images
        self.src_video = src_video
        self.src_mask = src_mask

        self.dit_original_ckpt = dit_original_ckpt
        self.low_noise_original_ckpt = low_noise_original_ckpt
        self.high_noise_original_ckpt = high_noise_original_ckpt
        self.transformer_model_name = transformer_model_name

        if self.model_cls in [
            "wan2.1",
            "wan2.1_distill",
            "wan2.1_vace",
            "wan2.1_sf",
            "wan2.1_sf_mtxg2",
            "seko_talk",
            "wan2.2_moe",
            "wan2.2_moe_audio",
            "wan2.2_audio",
            "wan2.2_moe_distill",
            "wan2.2_animate",
        ]:
            self.vae_stride = (4, 8, 8)
            if self.model_cls.startswith("wan2.2_moe"):
                self.use_image_encoder = False
        elif self.model_cls in ["wan2.2"]:
            self.vae_stride = (4, 16, 16)
            self.num_channels_latents = 48
        elif self.model_cls in ["hunyuan_video_1.5"]:
            self.vae_stride = (4, 16, 16)
            self.num_channels_latents = 32

    def create_generator(
        self,
        attn_mode="flash_attn2",
        infer_steps=50,
        num_frames=81,
        height=480,
        width=832,
        guidance_scale=5.0,
        sample_shift=5.0,
        fps=16,
        aspect_ratio="16:9",
        boundary=0.900,
        boundary_step_index=2,
        denoising_step_list=[1000, 750, 500, 250],
        config_json=None,
    ):
        if config_json is not None:
            self.set_infer_config_json(config_json)
        else:
            self.set_infer_config(
                attn_mode,
                infer_steps,
                num_frames,
                height,
                width,
                guidance_scale,
                sample_shift,
                fps,
                aspect_ratio,
                boundary,
                boundary_step_index,
                denoising_step_list,
            )

        config = set_config(self)
        print_config(config)
        self.runner = self._init_runner(config)
        logger.info(f"Initializing {self.model_cls} runner for {self.task} task...")
        logger.info(f"Model path: {self.model_path}")
        logger.info("LightGenerator initialized successfully!")

    def set_infer_config(
        self,
        attn_mode,
        infer_steps,
        num_frames,
        height,
        width,
        guidance_scale,
        sample_shift,
        fps,
        aspect_ratio,
        boundary,
        boundary_step_index,
        denoising_step_list,
    ):
        self.infer_steps = infer_steps
        self.target_width = width
        self.target_height = height
        self.target_video_length = num_frames
        self.sample_guide_scale = guidance_scale
        self.sample_shift = sample_shift
        if self.sample_guide_scale == 1:
            self.enable_cfg = False
        else:
            self.enable_cfg = True

        self.fps = fps
        self.aspect_ratio = aspect_ratio
        self.boundary = boundary
        self.boundary_step_index = boundary_step_index
        self.denoising_step_list = denoising_step_list
        if self.model_cls.startswith("wan"):
            self.self_attn_1_type = attn_mode
            self.cross_attn_1_type = attn_mode
            self.cross_attn_2_type = attn_mode
        elif self.model_cls in ["hunyuan_video_1.5"]:
            self.attn_type = attn_mode

    def set_infer_config_json(self, config_json):
        logger.info(f"Loading infer config from {config_json}")
        with open(config_json, "r") as f:
            config_json = json.load(f)
        self.update(config_json)

    def enable_lightvae(
        self,
        use_lightvae=False,
        use_tae=False,
        vae_path=None,
        tae_path=None,
    ):
        self.use_lightvae = use_lightvae
        self.use_tae = use_tae
        self.vae_path = vae_path
        self.tae_path = tae_path
        if self.use_tae and self.model_cls.startswith("wan") and "lighttae" in tae_path:
            self.need_scaled = True

    def enable_quantize(
        self,
        dit_quantized=False,
        text_encoder_quantized=False,
        image_encoder_quantized=False,
        dit_quantized_ckpt=None,
        low_noise_quantized_ckpt=None,
        high_noise_quantized_ckpt=None,
        text_encoder_quantized_ckpt=False,
        image_encoder_quantized_ckpt=False,
        quant_scheme="fp8-sgl",
    ):
        self.dit_quantized = dit_quantized
        self.dit_quant_scheme = quant_scheme
        self.dit_quantized_ckpt = dit_quantized_ckpt
        self.low_noise_quantized_ckpt = low_noise_quantized_ckpt
        self.high_noise_quantized_ckpt = high_noise_quantized_ckpt

        if self.model_cls.startswith("wan"):
            self.t5_quant_scheme = quant_scheme
            self.t5_quantized = text_encoder_quantized
            self.t5_quantized_ckpt = text_encoder_quantized_ckpt
            self.clip_quant_scheme = quant_scheme
            self.clip_quantized = image_encoder_quantized
            self.clip_quantized_ckpt = image_encoder_quantized_ckpt
        elif self.model_cls in ["hunyuan_video_1.5"]:
            self.qwen25vl_quantized = text_encoder_quantized
            self.qwen25vl_quantized_ckpt = text_encoder_quantized_ckpt
            self.qwen25vl_quant_scheme = quant_scheme

    def enable_offload(
        self,
        cpu_offload=False,
        offload_granularity="block",
        text_encoder_offload=False,
        image_encoder_offload=False,
        vae_offload=False,
    ):
        self.cpu_offload = cpu_offload
        self.offload_granularity = offload_granularity
        self.vae_offload = vae_offload
        if self.model_cls in [
            "wan2.1",
            "wan2.1_distill",
            "wan2.1_vace",
            "wan2.1_sf",
            "wan2.1_sf_mtxg2",
            "seko_talk",
            "wan2.2_moe",
            "wan2.2",
            "wan2.2_moe_audio",
            "wan2.2_audio",
            "wan2.2_moe_distill",
            "wan2.2_animate",
        ]:
            self.t5_cpu_offload = text_encoder_offload
            self.clip_encoder_offload = image_encoder_offload

        elif self.model_cls in ["hunyuan_video_1.5"]:
            self.qwen25vl_cpu_offload = text_encoder_offload
            self.siglip_cpu_offload = image_encoder_offload
            self.byt5_cpu_offload = image_encoder_offload

    def enable_compile(
        self,
    ):
        self.compile = True
        self.compile_shapes = [
            [480, 832],
            [544, 960],
            [720, 1280],
            [832, 480],
            [960, 544],
            [1280, 720],
            [480, 480],
            [576, 576],
            [704, 704],
            [960, 960],
        ]

    def enable_lora(self, lora_configs):
        self.lora_configs = lora_configs

    def enable_cache(
        self,
        cache_method="Tea",
        coefficients=[],
        teacache_thresh=0.15,
        use_ret_steps=False,
        magcache_calibration=False,
        magcache_K=6,
        magcache_thresh=0.24,
        magcache_retention_ratio=0.2,
        magcache_ratios=[],
    ):
        self.feature_caching = cache_method
        if cache_method == "Tea":
            self.coefficients = coefficients
            self.teacache_thresh = teacache_thresh
            self.use_ret_steps = use_ret_steps
        elif cache_method == "Mag":
            self.magcache_calibration = magcache_calibration
            self.magcache_K = magcache_K
            self.magcache_thresh = magcache_thresh
            self.magcache_retention_ratio = magcache_retention_ratio
            self.magcache_ratios = magcache_ratios

    def enable_parallel(self, cfg_p_size=1, seq_p_size=1, seq_p_attn_type="ulysses"):
        self._init_parallel()
        self.parallel = {
            "cfg_p_size": cfg_p_size,
            "seq_p_size": seq_p_size,
            "seq_p_attn_type": seq_p_attn_type,
        }
        set_parallel_config(self)

    @torch.no_grad()
    def generate(
        self,
        seed,
        prompt,
        negative_prompt,
        save_result_path,
        return_result_tensor=False,
    ):
        # Run inference (following LightX2V pattern)
        self.seed = seed
        self.prompt = prompt
        self.negative_prompt = negative_prompt
        self.save_result_path = save_result_path
        self.return_result_tensor = return_result_tensor
        seed_all(self.seed)
        input_info = set_input_info(self)
        self.runner.run_pipeline(input_info)
        logger.info("Video generated successfully!")
        logger.info(f"Video Saved in {save_result_path}")

    def _init_runner(self, config):
        torch.set_grad_enabled(False)
        runner = RUNNER_REGISTER[config["model_cls"]](config)
        runner.init_modules()
        return runner

    def _init_parallel(self):
        dist.init_process_group(backend="nccl")
        torch.cuda.set_device(dist.get_rank())