convert_vigen_to_x2v_lora.py 4.38 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
2
3
4
5
6
7
###  Using this script to convert ViGen-DiT Lora Format to Lightx2v
###
###  Cmd line:python convert_vigen_to_x2v_lora.py model_lora.pt model_lora_converted.safetensors
###
###  ViGen-DiT Project Url: https://github.com/yl-1993/ViGen-DiT
###
import os
PengGao's avatar
PengGao committed
8
9
10
11
import sys

import torch
from safetensors.torch import load_file, save_file
wangshankun's avatar
wangshankun committed
12
13

if len(sys.argv) != 3:
wangshankun's avatar
wangshankun committed
14
    print("用法: python convert_lora.py <输入文件> <输出文件.safetensors>")
wangshankun's avatar
wangshankun committed
15
16
17
18
19
20
21
22
23
    sys.exit(1)

ckpt_path = sys.argv[1]
output_path = sys.argv[2]

if not os.path.exists(ckpt_path):
    print(f"❌ 输入文件不存在: {ckpt_path}")
    sys.exit(1)

wangshankun's avatar
wangshankun committed
24
25
26
27
if ckpt_path.endswith(".safetensors"):
    state_dict = load_file(ckpt_path)
else:
    state_dict = torch.load(ckpt_path, map_location="cpu")
wangshankun's avatar
wangshankun committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

if "state_dict" in state_dict:
    state_dict = state_dict["state_dict"]
elif "model" in state_dict:
    state_dict = state_dict["model"]

mapped_dict = {}

# 映射表定义
attn_map = {
    "attn1": "self_attn",
    "attn2": "cross_attn",
}
proj_map = {
    "to_q": "q",
    "to_k": "k",
    "to_v": "v",
    "to_out": "o",
wangshankun's avatar
wangshankun committed
46
47
    "add_k_proj": "k_img",
    "add_v_proj": "v_img",
wangshankun's avatar
wangshankun committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
}
lora_map = {
    "lora_A": "lora_down",
    "lora_B": "lora_up",
}

for k, v in state_dict.items():
    # 预处理:将 to_out.0 / to_out.1 统一替换为 to_out
    k = k.replace("to_out.0", "to_out").replace("to_out.1", "to_out")
    k = k.replace(".default", "")  # 去除.default

    parts = k.split(".")

    # === Attention Blocks ===
    if k.startswith("blocks.") and len(parts) >= 5:
        block_id = parts[1]

        if parts[2].startswith("attn"):
            attn_raw = parts[2]
            proj_raw = parts[3]
            lora_raw = parts[4]

            if attn_raw in attn_map and proj_raw in proj_map and lora_raw in lora_map:
                attn_name = attn_map[attn_raw]
                proj_name = proj_map[proj_raw]
                lora_name = lora_map[lora_raw]
                new_k = f"diffusion_model.blocks.{block_id}.{attn_name}.{proj_name}.{lora_name}.weight"
                mapped_dict[new_k] = v
                continue
            else:
                print(f"无法映射 attention key: {k}")
                continue
        # === FFN Blocks ===
        elif parts[2] == "ffn":
            if parts[3:6] == ["net", "0", "proj"]:
                layer_id = "0"
                lora_raw = parts[6]
            elif parts[3:5] == ["net", "2"]:
                layer_id = "2"
                lora_raw = parts[5]
            else:
                print(f"无法解析 FFN key: {k}")
                continue

            if lora_raw not in lora_map:
                print(f"未知 FFN LoRA 类型: {k}")
                continue

            lora_name = lora_map[lora_raw]
            new_k = f"diffusion_model.blocks.{block_id}.ffn.{layer_id}.{lora_name}.weight"
            mapped_dict[new_k] = v
            continue
    # === Text Embedding ===
    elif k.startswith("condition_embedder.text_embedder.linear_"):
        layer_id = parts[2].split("_")[1]
        lora_raw = parts[3]
        if lora_raw in lora_map:
            lora_name = lora_map[lora_raw]
            new_k = f"diffusion_model.text_embedding.{layer_id}.{lora_name}.weight"
            mapped_dict[new_k] = v
            continue
        else:
            print(f"text_embedder 未知 LoRA 类型: {k}")
            continue
helloyongyang's avatar
helloyongyang committed
112
    """
wangshankun's avatar
wangshankun committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    # === Time Embedding ===
    elif k.startswith("condition_embedder.time_embedder.linear_"):
        layer_id = parts[2].split("_")[1]
        lora_raw = parts[3]
        if lora_raw in lora_map:
            lora_name = lora_map[lora_raw]
            new_k = f"diffusion_model.time_embedding.{layer_id}.{lora_name}.weight"
            mapped_dict[new_k] = v
            continue
        else:
            print(f"time_embedder 未知 LoRA 类型: {k}")
            continue

    # === Time Projection ===
    elif k.startswith("condition_embedder.time_proj."):
        lora_raw = parts[2]
        if lora_raw in lora_map:
            lora_name = lora_map[lora_raw]
            new_k = f"diffusion_model.time_projection.1.{lora_name}.weight"
            mapped_dict[new_k] = v
            continue
        else:
            print(f"time_proj 未知 LoRA 类型: {k}")
            continue
helloyongyang's avatar
helloyongyang committed
137
    """
wangshankun's avatar
wangshankun committed
138
139
140
141
142
143
144
    # fallback
    print(f"未识别结构 key: {k}")

# 保存
print(f"\n✅ 成功重命名 {len(mapped_dict)} 个 LoRA 参数")
save_file(mapped_dict, output_path)
print(f"💾 已保存为: {output_path}")