model.py 4.75 KB
Newer Older
Watebear's avatar
Watebear committed
1
2
import glob
import json
PengGao's avatar
PengGao committed
3
4
import math
import os
Watebear's avatar
Watebear committed
5

PengGao's avatar
PengGao committed
6
7
8
9
import torch
from safetensors import safe_open

from lightx2v.models.networks.cogvideox.infer.post_infer import CogvideoxPostInfer
Watebear's avatar
Watebear committed
10
11
from lightx2v.models.networks.cogvideox.infer.pre_infer import CogvideoxPreInfer
from lightx2v.models.networks.cogvideox.infer.transformer_infer import CogvideoxTransformerInfer
PengGao's avatar
PengGao committed
12
13
14
from lightx2v.models.networks.cogvideox.weights.post_weights import CogvideoxPostWeights
from lightx2v.models.networks.cogvideox.weights.pre_weights import CogvideoxPreWeights
from lightx2v.models.networks.cogvideox.weights.transformers_weights import CogvideoxTransformerWeights
Watebear's avatar
Watebear committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117


class CogvideoxModel:
    pre_weight_class = CogvideoxPreWeights
    post_weight_class = CogvideoxPostWeights
    transformer_weight_class = CogvideoxTransformerWeights

    def __init__(self, config):
        self.config = config
        self.device = torch.device("cuda")
        self._init_infer_class()
        self._init_weights()
        self._init_infer()

    def _init_infer_class(self):
        self.pre_infer_class = CogvideoxPreInfer
        self.post_infer_class = CogvideoxPostInfer
        self.transformer_infer_class = CogvideoxTransformerInfer

    def _load_safetensor_to_dict(self, file_path):
        with safe_open(file_path, framework="pt") as f:
            tensor_dict = {key: f.get_tensor(key).to(torch.bfloat16).cuda() for key in f.keys()}
        return tensor_dict

    def _load_ckpt(self):
        safetensors_pattern = os.path.join(self.config.model_path, "transformer", "*.safetensors")
        safetensors_files = glob.glob(safetensors_pattern)

        if not safetensors_files:
            raise FileNotFoundError(f"No .safetensors files found in directory: {self.model_path}")
        weight_dict = {}
        for file_path in safetensors_files:
            file_weights = self._load_safetensor_to_dict(file_path)
            weight_dict.update(file_weights)
        return weight_dict

    def _init_weights(self):
        weight_dict = self._load_ckpt()
        with open(os.path.join(self.config.model_path, "transformer", "config.json"), "r") as f:
            transformer_cfg = json.load(f)
        # init weights
        self.pre_weight = self.pre_weight_class(transformer_cfg)
        self.transformer_weights = self.transformer_weight_class(transformer_cfg)
        self.post_weight = self.post_weight_class(transformer_cfg)
        # load weights
        self.pre_weight.load_weights(weight_dict)
        self.transformer_weights.load_weights(weight_dict)
        self.post_weight.load_weights(weight_dict)

    def _init_infer(self):
        self.pre_infer = self.pre_infer_class(self.config)
        self.transformer_infer = self.transformer_infer_class(self.config)
        self.post_infer = self.post_infer_class(self.config)

    def set_scheduler(self, scheduler):
        self.scheduler = scheduler
        self.transformer_infer.set_scheduler(scheduler)

    def to_cpu(self):
        self.pre_weight.to_cpu()
        self.post_weight.to_cpu()
        self.transformer_weights.to_cpu()

    def to_cuda(self):
        self.pre_weight.to_cuda()
        self.post_weight.to_cuda()
        self.transformer_weights.to_cuda()

    @torch.no_grad()
    def infer(self, inputs):
        t = self.scheduler.timesteps[self.scheduler.step_index]
        text_encoder_output = inputs["text_encoder_output"]["context"]
        do_classifier_free_guidance = self.config.guidance_scale > 1.0
        latent_model_input = self.scheduler.latents
        latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
        timestep = t.expand(latent_model_input.shape[0])

        hidden_states, encoder_hidden_states, emb, infer_shapes = self.pre_infer.infer(
            self.pre_weight,
            latent_model_input[0],
            timestep,
            text_encoder_output[0],
        )

        hidden_states, encoder_hidden_states = self.transformer_infer.infer(
            self.transformer_weights,
            hidden_states=hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            temb=emb,
        )

        noise_pred = self.post_infer.infer(self.post_weight, hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=emb, infer_shapes=infer_shapes)

        noise_pred = noise_pred.float()

        if self.config.use_dynamic_cfg:  # True
            self.scheduler.guidance_scale = 1 + self.scheduler.guidance_scale * ((1 - math.cos(math.pi * ((self.scheduler.infer_steps - t.item()) / self.scheduler.infer_steps) ** 5.0)) / 2)

        if do_classifier_free_guidance:  # False
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + self.scheduler.guidance_scale * (noise_pred_text - noise_pred_uncond)

        self.scheduler.noise_pred = noise_pred