manager.py 14.4 KB
Newer Older
PengGao's avatar
PengGao committed
1
import gc
2
import queue
PengGao's avatar
PengGao committed
3
import threading
4
5
import time
from collections import OrderedDict
gushiqiao's avatar
gushiqiao committed
6

PengGao's avatar
PengGao committed
7
8
9
import torch
from loguru import logger

gushiqiao's avatar
gushiqiao committed
10

11
class WeightAsyncStreamManager(object):
12
13
    def __init__(self, blocks_num, offload_ratio=1, phases_num=1):
        self.active_weights = [None for _ in range(3)]
gushiqiao's avatar
gushiqiao committed
14
        self.compute_stream = torch.cuda.Stream(priority=-1)
15
16
        self.cpu_load_stream = torch.cuda.Stream(priority=0)
        self.cuda_load_stream = torch.cuda.Stream(priority=0)
17
        self.offload_block_num = int(offload_ratio * blocks_num)
18
        self.phases_num = phases_num
gushiqiao's avatar
gushiqiao committed
19
        self.block_nums = blocks_num
20
        self.offload_phases_num = blocks_num * phases_num * offload_ratio
gushiqiao's avatar
gushiqiao committed
21
22

    def prefetch_weights(self, block_idx, blocks_weights):
23
24
25
26
27
28
29
        with torch.cuda.stream(self.cuda_load_stream):
            self.active_weights[2] = blocks_weights[block_idx]
            self.active_weights[2].to_cuda_async()
        with torch.cuda.stream(self.cpu_load_stream):
            if block_idx < self.offload_block_num:
                if self.active_weights[1] is not None:
                    self.active_weights[1].to_cpu_async()
gushiqiao's avatar
gushiqiao committed
30
31
32

    def swap_weights(self):
        self.compute_stream.synchronize()
33
34
        self.cpu_load_stream.synchronize()
        self.cuda_load_stream.synchronize()
gushiqiao's avatar
gushiqiao committed
35
36

        self.active_weights[0], self.active_weights[1] = (
37
            self.active_weights[2],
gushiqiao's avatar
gushiqiao committed
38
39
            self.active_weights[0],
        )
40
41

    def prefetch_phase(self, block_idx, phase_idx, blocks):
42
        with torch.cuda.stream(self.cuda_load_stream):
43
44
            new_phase = blocks[block_idx].compute_phases[phase_idx]
            new_phase.to_cuda_async()
45
46
47
48
49
50
            self.active_weights[2] = (phase_idx, blocks[block_idx].compute_phases[phase_idx])
        with torch.cuda.stream(self.cpu_load_stream):
            if block_idx * self.phases_num + phase_idx < self.offload_phases_num:
                if self.active_weights[1] is not None:
                    _, old_phase = self.active_weights[1]
                    old_phase.to_cpu_async()
51
52
53

    def swap_phases(self):
        self.compute_stream.synchronize()
54
55
56
        self.cpu_load_stream.synchronize()
        self.cuda_load_stream.synchronize()
        self.active_weights[0], self.active_weights[1] = self.active_weights[2], self.active_weights[0]
57
58
59
60
        self.active_weights[2] = None


class LazyWeightAsyncStreamManager(WeightAsyncStreamManager):
gushiqiao's avatar
gushiqiao committed
61
    def __init__(self, blocks_num, offload_ratio=1, phases_num=1, num_disk_workers=1, max_memory=2, offload_gra="phase"):
62
        super().__init__(blocks_num, offload_ratio, phases_num)
gushiqiao's avatar
gushiqiao committed
63
        self.offload_gra = offload_gra
64
65
66
67
68
69
70
71
72
73
74
75
76
77
        self.worker_stop_event = threading.Event()
        self.pin_memory_buffer = MemoryBuffer(max_memory * (1024**3))
        self.disk_task_queue = queue.PriorityQueue()
        self.disk_workers = []
        self.release_workers = []
        self._start_disk_workers(num_disk_workers)
        self.initial_prefetch_done = False
        self.pending_tasks = {}
        self.task_lock = threading.Lock()
        self.last_used_time = {}
        self.time_lock = threading.Lock()

    def _start_disk_workers(self, num_workers):
        for i in range(num_workers):
gushiqiao's avatar
gushiqiao committed
78
79
80
81
            if self.offload_gra == "phase":
                worker = threading.Thread(target=self._disk_worker_loop, daemon=True)
            else:
                worker = threading.Thread(target=self._disk_worker_loop_block, daemon=True)
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
            worker.start()
            self.disk_workers.append(worker)

    def _disk_worker_loop(self):
        while not self.worker_stop_event.is_set():
            try:
                _, task = self.disk_task_queue.get(timeout=0.5)
                if task is None:
                    break

                block_idx, phase_idx, phase = task

                phase.load_from_disk()
                self.pin_memory_buffer.push((block_idx, phase_idx), phase)

                with self.task_lock:
                    if (block_idx, phase_idx) in self.pending_tasks:
                        del self.pending_tasks[(block_idx, phase_idx)]
            except queue.Empty:
                continue
            except Exception as e:
                logger.error(f"Disk worker thread error: {e}")

gushiqiao's avatar
gushiqiao committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    def _disk_worker_loop_block(self):
        while not self.worker_stop_event.is_set():
            try:
                _, task = self.disk_task_queue.get(timeout=0.5)
                if task is None:
                    break

                block_idx, block = task

                for phase in block.compute_phases:
                    phase.load_from_disk()
                self.pin_memory_buffer.push(block_idx, block)

                with self.task_lock:
                    if block_idx in self.pending_tasks:
                        del self.pending_tasks[block_idx]
            except queue.Empty:
                continue
            except Exception as e:
                logger.error(f"Disk worker thread error: {e}")

gushiqiao's avatar
gushiqiao committed
126
127
128
    def _async_prefetch_block(self, blocks, next_block_idx=None):
        if next_block_idx is None:
            next_block_idx = self.pin_memory_buffer.get_max_block_index()
gushiqiao's avatar
gushiqiao committed
129

130
131
132
        if next_block_idx < 0:
            next_block_idx = 0

gushiqiao's avatar
gushiqiao committed
133
134
135
        if next_block_idx == self.block_nums:
            return

gushiqiao's avatar
gushiqiao committed
136
137
138
139
140
141
142
143
144
145
        if self.offload_gra == "phase":
            for phase_idx in range(self.phases_num):
                obj_key = (next_block_idx, phase_idx)

                if self.pin_memory_buffer.exists(obj_key) or (obj_key in self.pending_tasks):
                    continue

                with self.task_lock:
                    self.pending_tasks[obj_key] = True

gushiqiao's avatar
gushiqiao committed
146
                phase = blocks[next_block_idx].compute_phases[phase_idx]
147

gushiqiao's avatar
gushiqiao committed
148
149
150
151
                priority_key = (next_block_idx, phase_idx)
                self.disk_task_queue.put((priority_key, (next_block_idx, phase_idx, phase)))
        else:
            obj_key = next_block_idx
152
            if self.pin_memory_buffer.exists(obj_key) or (obj_key in self.pending_tasks):
gushiqiao's avatar
gushiqiao committed
153
                return
154
155
156
157

            with self.task_lock:
                self.pending_tasks[obj_key] = True

gushiqiao's avatar
gushiqiao committed
158
            block = blocks[next_block_idx]
gushiqiao's avatar
gushiqiao committed
159
            self.disk_task_queue.put((obj_key, (next_block_idx, block)))
160

gushiqiao's avatar
gushiqiao committed
161
    def _sync_prefetch_block(self, blocks):
162
163
        block_idx = 0
        while not self.pin_memory_buffer.is_nearly_full():
gushiqiao's avatar
gushiqiao committed
164
165
            if self.offload_gra == "phase":
                for phase_idx in range(self.phases_num):
gushiqiao's avatar
gushiqiao committed
166
                    phase = blocks[block_idx].compute_phases[phase_idx]
gushiqiao's avatar
gushiqiao committed
167
168
169
170
                    logger.info(f"Synchronous loading: block={block_idx}, phase={phase_idx}")
                    phase.load_from_disk()
                    self.pin_memory_buffer.push((block_idx, phase_idx), phase)
            else:
gushiqiao's avatar
gushiqiao committed
171
                block = blocks[block_idx]
gushiqiao's avatar
gushiqiao committed
172
173
174
175
176
                logger.info(f"Synchronous loading: block={block_idx}")
                for phase in block.compute_phases:
                    phase.load_from_disk()
                self.pin_memory_buffer.push(block_idx, block)

177
            block_idx += 1
gushiqiao's avatar
gushiqiao committed
178
179
            if block_idx == self.block_nums:
                break
180

gushiqiao's avatar
gushiqiao committed
181
    def prefetch_weights_from_disk(self, blocks):
182
183
184
        if self.initial_prefetch_done:
            return

gushiqiao's avatar
gushiqiao committed
185
        self._sync_prefetch_block(blocks)
186
187
        self.initial_prefetch_done = True

gushiqiao's avatar
gushiqiao committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    def prefetch_weights(self, block_idx, blocks):
        obj_key = block_idx

        if not self.pin_memory_buffer.exists(obj_key):
            is_loading = False
            with self.task_lock:
                if obj_key in self.pending_tasks:
                    is_loading = True

            if is_loading:
                start_time = time.time()
                while not self.pin_memory_buffer.exists(obj_key):
                    time.sleep(0.001)
                    if time.time() - start_time > 5:
                        raise TimeoutError(f"Load timeout: block={block_idx}")
            else:
gushiqiao's avatar
gushiqiao committed
204
205
206
207
208
209
210
211
212
                logger.info("Not find prefetch block={block_idx} task.")
                logger.info("Sync prefetch block={block_idx}.")
                self._async_prefetch_block(blocks, block_idx)
                start_time = time.time()
                for phase_idx in self.phases_num:
                    while not self.pin_memory_buffer.exists((block_idx, phase_idx)):
                        time.sleep(0.001)
                        if time.time() - start_time > 15:
                            raise TimeoutError(f"Load timeout: block={block_idx}, phase={phase_idx}")
gushiqiao's avatar
gushiqiao committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226

        with torch.cuda.stream(self.cuda_load_stream):
            block = self.pin_memory_buffer.get(obj_key)
            block.to_cuda_async()
            self.active_weights[2] = (obj_key, block)

        with torch.cuda.stream(self.cpu_load_stream):
            if block_idx < self.offload_block_num:
                if self.active_weights[1] is not None:
                    old_key, old_block = self.active_weights[1]
                    if self.pin_memory_buffer.exists(old_key):
                        old_block.to_cpu_async()
                        self.pin_memory_buffer.pop(old_key)

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    def prefetch_phase(self, block_idx, phase_idx, blocks):
        obj_key = (block_idx, phase_idx)

        if not self.pin_memory_buffer.exists(obj_key):
            is_loading = False
            with self.task_lock:
                if obj_key in self.pending_tasks:
                    is_loading = True

            if is_loading:
                start_time = time.time()
                while not self.pin_memory_buffer.exists(obj_key):
                    time.sleep(0.001)
                    if time.time() - start_time > 5:
                        raise TimeoutError(f"Load timeout: block={block_idx}, phase={phase_idx}")
            else:
gushiqiao's avatar
gushiqiao committed
243
244
245
246
247
248
249
250
                logger.info(f"Not find block={block_idx}, phase={phase_idx} task.")
                logger.info(f"Sync prefetch block={block_idx}, phase={phase_idx}.")
                self._async_prefetch_block(blocks, block_idx)
                start_time = time.time()
                while not self.pin_memory_buffer.exists((block_idx, phase_idx)):
                    time.sleep(0.001)
                    if time.time() - start_time > 5:
                        raise TimeoutError(f"Load timeout: block={block_idx}, phase={phase_idx}")
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

        with torch.cuda.stream(self.cuda_load_stream):
            phase = self.pin_memory_buffer.get(obj_key)
            phase.to_cuda_async()
            self.active_weights[2] = (obj_key, phase)

        with torch.cuda.stream(self.cpu_load_stream):
            if block_idx * self.phases_num + phase_idx < self.offload_phases_num:
                if self.active_weights[1] is not None:
                    old_key, old_phase = self.active_weights[1]
                    if self.pin_memory_buffer.exists(old_key):
                        old_phase.to_cpu_async()
                        self.pin_memory_buffer.pop(old_key)

    def shutdown(self):
        self.worker_stop_event.set()

        while not self.disk_task_queue.empty():
            try:
                self.disk_task_queue.get_nowait()
            except queue.Empty:
                continue

        for _ in self.disk_workers:
            self.disk_task_queue.put((0, None))

        for worker in self.disk_workers:
            worker.join(timeout=5)

        for worker in self.release_workers:
            worker.join(timeout=5)

        logger.info("All worker threads have been closed")

gushiqiao's avatar
gushiqiao committed
285
286
287
288
    def clear(self):
        self.pin_memory_buffer.clear()
        self.shutdown()

289
290
291
292
293
294

class MemoryBuffer:
    def __init__(self, max_memory_bytes=8 * (1024**3)):
        self.cache = OrderedDict()
        self.max_mem = max_memory_bytes
        self.used_mem = 0
gushiqiao's avatar
gushiqiao committed
295
        self.obj_size_map = {}
296
297
298
299
        self.lock = threading.Lock()
        self.insertion_order = []
        self.insertion_index = 0

gushiqiao's avatar
gushiqiao committed
300
    def push(self, key, obj):
301
302
303
        with self.lock:
            if key in self.cache:
                return
gushiqiao's avatar
gushiqiao committed
304
305
306
307
308
309
310
311
312
313
314
315
316
            if hasattr(obj, "compute_phases"):
                obj_idx = key
                if len(self.obj_size_map) == 0:
                    _size = 0
                    for phase in obj.compute_phases:
                        _size += phase.calculate_size()
                    self.obj_size_map[0] = _size
                size = self.obj_size_map[0]
            else:
                _, obj_idx = key
                if obj_idx not in self.obj_size_map:
                    self.obj_size_map[obj_idx] = obj.calculate_size()
                size = self.obj_size_map[obj_idx]
317

gushiqiao's avatar
gushiqiao committed
318
            self.cache[key] = (size, obj, self.insertion_index)
319
320
321
322
323
324
            self.insertion_order.append((key, self.insertion_index))
            self.insertion_index += 1
            self.used_mem += size

    def _remove_key(self, key):
        if key in self.cache:
gushiqiao's avatar
gushiqiao committed
325
            size, obj, idx = self.cache.pop(key)
326
            try:
gushiqiao's avatar
gushiqiao committed
327
328
329
330
331
                if hasattr(obj, "compute_phases"):
                    for phase in obj.compute_phases:
                        phase.clear()
                else:
                    obj.clear()
332
            except Exception as e:
gushiqiao's avatar
gushiqiao committed
333
                logger.info(f"Error clearing obj: {e}")
334
335
336
337
338
339
340
            self.used_mem -= size

            self.insertion_order = [(k, i) for (k, i) in self.insertion_order if k != key]

    def get(self, key, default=None):
        with self.lock:
            if key in self.cache:
gushiqiao's avatar
gushiqiao committed
341
342
                size, obj, idx = self.cache[key]
                return obj
343
344
345
346
347
348
        return default

    def exists(self, key):
        with self.lock:
            return key in self.cache

gushiqiao's avatar
gushiqiao committed
349
350
351
352
353
354
355
356
    def pop_front(self):
        with self.lock:
            if not self.insertion_order:
                return False
            front_key, _ = self.insertion_order[0]
            self._remove_key(front_key)
            return True

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    def pop(self, key):
        with self.lock:
            if key in self.cache:
                self._remove_key(key)
                return True
        return False

    def is_nearly_full(self):
        with self.lock:
            return self.used_mem >= self.max_mem * 0.9

    def get_max_block_index(self):
        with self.lock:
            if not self.cache:
                return -1
gushiqiao's avatar
gushiqiao committed
372
373
374
375
            if isinstance(list(self.cache.keys())[-1], tuple):
                return (list(self.cache.keys())[-1][0] + 1) % 40
            else:
                return (list(self.cache.keys())[-1] + 1) % 40
gushiqiao's avatar
gushiqiao committed
376
377
378
379
380
381
382
383
384
385

    def clear(self):
        with self.lock:
            for key in list(self.cache.keys()):
                self._remove_key(key)

            self.insertion_order = []
            self.insertion_index = 0
            self.used_mem = 0
            torch.cuda.empty_cache()
gushiqiao's avatar
gushiqiao committed
386
            gc.collect()