image_encoder.py 4.03 KB
Newer Older
1
2
3
import argparse
import json
import os
PengGao's avatar
PengGao committed
4

5
6
import torch
import torchvision.transforms.functional as TF
PengGao's avatar
PengGao committed
7
8
9
10
import uvicorn
from fastapi import FastAPI
from loguru import logger
from pydantic import BaseModel
11

12
13
from lightx2v.models.runners.hunyuan.hunyuan_runner import HunyuanRunner
from lightx2v.models.runners.wan.wan_causvid_runner import WanCausVidRunner
PengGao's avatar
PengGao committed
14
15
from lightx2v.models.runners.wan.wan_distill_runner import WanDistillRunner
from lightx2v.models.runners.wan.wan_runner import WanRunner
16
from lightx2v.models.runners.wan.wan_skyreels_v2_df_runner import WanSkyreelsV2DFRunner
17
from lightx2v.utils.profiler import ProfilingContext
PengGao's avatar
PengGao committed
18
19
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.utils.service_utils import BaseServiceStatus, ImageTransporter, ProcessManager, TaskStatusMessage, TensorTransporter
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from lightx2v.utils.set_config import set_config

tensor_transporter = TensorTransporter()
image_transporter = ImageTransporter()

# =========================
# FastAPI Related Code
# =========================

runner = None

app = FastAPI()


class Message(BaseModel):
    task_id: str
    task_id_must_unique: bool = False

    img: bytes

    def get(self, key, default=None):
        return getattr(self, key, default)


class ImageEncoderServiceStatus(BaseServiceStatus):
    pass


class ImageEncoderRunner:
    def __init__(self, config):
        self.config = config
51
52
53
        self.runner_cls = RUNNER_REGISTER[self.config.model_cls]

        self.runner = self.runner_cls(config)
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
54
        self.runner.image_encoder = self.runner.load_image_encoder()
55
56

    def _run_image_encoder(self, img):
57
58
        img = image_transporter.load_image(img)
        return self.runner.run_image_encoder(img)
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105


def run_image_encoder(message: Message):
    try:
        global runner
        image_encoder_out = runner._run_image_encoder(message.img)
        ImageEncoderServiceStatus.complete_task(message)
        return image_encoder_out
    except Exception as e:
        logger.error(f"task_id {message.task_id} failed: {str(e)}")
        ImageEncoderServiceStatus.record_failed_task(message, error=str(e))


@app.post("/v1/local/image_encoder/generate")
def v1_local_image_encoder_generate(message: Message):
    try:
        task_id = ImageEncoderServiceStatus.start_task(message)
        image_encoder_output = run_image_encoder(message)
        output = tensor_transporter.prepare_tensor(image_encoder_output)
        del image_encoder_output
        return {"task_id": task_id, "task_status": "completed", "output": output, "kwargs": None}
    except RuntimeError as e:
        return {"error": str(e)}


@app.get("/v1/local/image_encoder/generate/service_status")
async def get_service_status():
    return ImageEncoderServiceStatus.get_status_service()


@app.get("/v1/local/image_encoder/generate/get_all_tasks")
async def get_all_tasks():
    return ImageEncoderServiceStatus.get_all_tasks()


@app.post("/v1/local/image_encoder/generate/task_status")
async def get_task_status(message: TaskStatusMessage):
    return ImageEncoderServiceStatus.get_status_task_id(message.task_id)


# =========================
# Main Entry
# =========================

if __name__ == "__main__":
    ProcessManager.register_signal_handler()
    parser = argparse.ArgumentParser()
106
    parser.add_argument("--model_cls", type=str, required=True, choices=["wan2.1", "hunyuan", "wan2.1_distill", "wan2.1_causvid", "wan2.1_skyreels_v2_df", "cogvideox"], default="hunyuan")
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    parser.add_argument("--task", type=str, choices=["t2v", "i2v"], default="t2v")
    parser.add_argument("--model_path", type=str, required=True)
    parser.add_argument("--config_json", type=str, required=True)

    parser.add_argument("--port", type=int, default=9003)
    args = parser.parse_args()
    logger.info(f"args: {args}")

    assert args.task == "i2v"

    with ProfilingContext("Init Server Cost"):
        config = set_config(args)
        logger.info(f"config:\n{json.dumps(config, ensure_ascii=False, indent=4)}")
        runner = ImageEncoderRunner(config)

    uvicorn.run(app, host="0.0.0.0", port=config.port, reload=False, workers=1)