model.py 15.2 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
7
8
9
10
11
# Modified from ``https://github.com/openai/CLIP'' and ``https://github.com/mlfoundations/open_clip''
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import logging
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T

from lightx2v.attentions import attention
12
from lightx2v.models.input_encoders.hf.t5.tokenizer import HuggingfaceTokenizer
root's avatar
root committed
13
from loguru import logger
helloyongyang's avatar
helloyongyang committed
14
15
16
17

from .xlm_roberta import XLMRoberta

__all__ = [
Dongz's avatar
Dongz committed
18
19
20
    "XLMRobertaCLIP",
    "clip_xlm_roberta_vit_h_14",
    "CLIPModel",
helloyongyang's avatar
helloyongyang committed
21
22
23
24
25
26
27
28
29
30
]


def pos_interpolate(pos, seq_len):
    if pos.size(1) == seq_len:
        return pos
    else:
        src_grid = int(math.sqrt(pos.size(1)))
        tar_grid = int(math.sqrt(seq_len))
        n = pos.size(1) - src_grid * src_grid
Dongz's avatar
Dongz committed
31
32
33
34
35
36
37
        return torch.cat(
            [
                pos[:, :n],
                F.interpolate(pos[:, n:].float().reshape(1, src_grid, src_grid, -1).permute(0, 3, 1, 2), size=(tar_grid, tar_grid), mode="bicubic", align_corners=False).flatten(2).transpose(1, 2),
            ],
            dim=1,
        )
helloyongyang's avatar
helloyongyang committed
38
39
40
41
42
43
44
45
46
47
48
49
50


class QuickGELU(nn.Module):
    def forward(self, x):
        return x * torch.sigmoid(1.702 * x)


class LayerNorm(nn.LayerNorm):
    def forward(self, x):
        return super().forward(x.float()).type_as(x)


class SelfAttention(nn.Module):
Dongz's avatar
Dongz committed
51
    def __init__(self, dim, num_heads, causal=False, attn_dropout=0.0, proj_dropout=0.0):
helloyongyang's avatar
helloyongyang committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.causal = causal
        self.attn_dropout = attn_dropout
        self.proj_dropout = proj_dropout

        # layers
        self.to_qkv = nn.Linear(dim, dim * 3)
        self.proj = nn.Linear(dim, dim)

    def forward(self, x):
        """
        x:   [B, L, C].
        """
        b, s, c, n, d = *x.size(), self.num_heads, self.head_dim

        # compute query, key, value
        q, k, v = self.to_qkv(x).view(b, s, 3, n, d).unbind(2)

        # compute attention
Dongz's avatar
Dongz committed
75
        x = attention(q=q, k=k, v=v, attention_type="torch_sdpa")
helloyongyang's avatar
helloyongyang committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        x = x.reshape(b, s, c)

        # output
        x = self.proj(x)
        x = F.dropout(x, self.proj_dropout, self.training)
        return x


class SwiGLU(nn.Module):
    def __init__(self, dim, mid_dim):
        super().__init__()
        self.dim = dim
        self.mid_dim = mid_dim

        # layers
        self.fc1 = nn.Linear(dim, mid_dim)
        self.fc2 = nn.Linear(dim, mid_dim)
        self.fc3 = nn.Linear(mid_dim, dim)

    def forward(self, x):
        x = F.silu(self.fc1(x)) * self.fc2(x)
        x = self.fc3(x)
        return x


class AttentionBlock(nn.Module):
Dongz's avatar
Dongz committed
102
103
    def __init__(self, dim, mlp_ratio, num_heads, post_norm=False, causal=False, activation="quick_gelu", attn_dropout=0.0, proj_dropout=0.0, norm_eps=1e-5):
        assert activation in ["quick_gelu", "gelu", "swi_glu"]
helloyongyang's avatar
helloyongyang committed
104
105
106
107
108
109
110
111
112
113
        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.num_heads = num_heads
        self.post_norm = post_norm
        self.causal = causal
        self.norm_eps = norm_eps

        # layers
        self.norm1 = LayerNorm(dim, eps=norm_eps)
Dongz's avatar
Dongz committed
114
        self.attn = SelfAttention(dim, num_heads, causal, attn_dropout, proj_dropout)
helloyongyang's avatar
helloyongyang committed
115
        self.norm2 = LayerNorm(dim, eps=norm_eps)
Dongz's avatar
Dongz committed
116
        if activation == "swi_glu":
helloyongyang's avatar
helloyongyang committed
117
118
            self.mlp = SwiGLU(dim, int(dim * mlp_ratio))
        else:
Dongz's avatar
Dongz committed
119
            self.mlp = nn.Sequential(nn.Linear(dim, int(dim * mlp_ratio)), QuickGELU() if activation == "quick_gelu" else nn.GELU(), nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout))
helloyongyang's avatar
helloyongyang committed
120
121
122
123
124
125
126
127
128
129
130
131

    def forward(self, x):
        if self.post_norm:
            x = x + self.norm1(self.attn(x))
            x = x + self.norm2(self.mlp(x))
        else:
            x = x + self.attn(self.norm1(x))
            x = x + self.mlp(self.norm2(x))
        return x


class AttentionPool(nn.Module):
Dongz's avatar
Dongz committed
132
    def __init__(self, dim, mlp_ratio, num_heads, activation="gelu", proj_dropout=0.0, norm_eps=1e-5):
helloyongyang's avatar
helloyongyang committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.proj_dropout = proj_dropout
        self.norm_eps = norm_eps

        # layers
        gain = 1.0 / math.sqrt(dim)
        self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
        self.to_q = nn.Linear(dim, dim)
        self.to_kv = nn.Linear(dim, dim * 2)
        self.proj = nn.Linear(dim, dim)
        self.norm = LayerNorm(dim, eps=norm_eps)
Dongz's avatar
Dongz committed
149
        self.mlp = nn.Sequential(nn.Linear(dim, int(dim * mlp_ratio)), QuickGELU() if activation == "quick_gelu" else nn.GELU(), nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout))
helloyongyang's avatar
helloyongyang committed
150
151
152
153
154
155
156
157
158
159
160
161

    def forward(self, x):
        """
        x:  [B, L, C].
        """
        b, s, c, n, d = *x.size(), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.to_q(self.cls_embedding).view(1, 1, n, d).expand(b, -1, -1, -1)
        k, v = self.to_kv(x).view(b, s, 2, n, d).unbind(2)

        # compute attention
Dongz's avatar
Dongz committed
162
        x = attention(q=q, k=k, v=v, attention_type="torch_sdpa")
helloyongyang's avatar
helloyongyang committed
163
164
165
166
167
168
169
170
171
172
173
174
        x = x.reshape(b, 1, c)

        # output
        x = self.proj(x)
        x = F.dropout(x, self.proj_dropout, self.training)

        # mlp
        x = x + self.mlp(self.norm(x))
        return x[:, 0]


class VisionTransformer(nn.Module):
Dongz's avatar
Dongz committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    def __init__(
        self,
        image_size=224,
        patch_size=16,
        dim=768,
        mlp_ratio=4,
        out_dim=512,
        num_heads=12,
        num_layers=12,
        pool_type="token",
        pre_norm=True,
        post_norm=False,
        activation="quick_gelu",
        attn_dropout=0.0,
        proj_dropout=0.0,
        embedding_dropout=0.0,
        norm_eps=1e-5,
    ):
helloyongyang's avatar
helloyongyang committed
193
        if image_size % patch_size != 0:
root's avatar
root committed
194
            logger.info("[WARNING] image_size is not divisible by patch_size", flush=True)
Dongz's avatar
Dongz committed
195
        assert pool_type in ("token", "token_fc", "attn_pool")
helloyongyang's avatar
helloyongyang committed
196
197
198
199
        out_dim = out_dim or dim
        super().__init__()
        self.image_size = image_size
        self.patch_size = patch_size
Dongz's avatar
Dongz committed
200
        self.num_patches = (image_size // patch_size) ** 2
helloyongyang's avatar
helloyongyang committed
201
202
203
204
205
206
207
208
209
210
211
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.out_dim = out_dim
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.pool_type = pool_type
        self.post_norm = post_norm
        self.norm_eps = norm_eps

        # embeddings
        gain = 1.0 / math.sqrt(dim)
Dongz's avatar
Dongz committed
212
213
        self.patch_embedding = nn.Conv2d(3, dim, kernel_size=patch_size, stride=patch_size, bias=not pre_norm)
        if pool_type in ("token", "token_fc"):
helloyongyang's avatar
helloyongyang committed
214
            self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
Dongz's avatar
Dongz committed
215
        self.pos_embedding = nn.Parameter(gain * torch.randn(1, self.num_patches + (1 if pool_type in ("token", "token_fc") else 0), dim))
helloyongyang's avatar
helloyongyang committed
216
217
218
219
        self.dropout = nn.Dropout(embedding_dropout)

        # transformer
        self.pre_norm = LayerNorm(dim, eps=norm_eps) if pre_norm else None
Dongz's avatar
Dongz committed
220
        self.transformer = nn.Sequential(*[AttentionBlock(dim, mlp_ratio, num_heads, post_norm, False, activation, attn_dropout, proj_dropout, norm_eps) for _ in range(num_layers)])
helloyongyang's avatar
helloyongyang committed
221
222
223
        self.post_norm = LayerNorm(dim, eps=norm_eps)

        # head
Dongz's avatar
Dongz committed
224
        if pool_type == "token":
helloyongyang's avatar
helloyongyang committed
225
            self.head = nn.Parameter(gain * torch.randn(dim, out_dim))
Dongz's avatar
Dongz committed
226
        elif pool_type == "token_fc":
helloyongyang's avatar
helloyongyang committed
227
            self.head = nn.Linear(dim, out_dim)
Dongz's avatar
Dongz committed
228
229
        elif pool_type == "attn_pool":
            self.head = AttentionPool(dim, mlp_ratio, num_heads, activation, proj_dropout, norm_eps)
helloyongyang's avatar
helloyongyang committed
230
231
232
233
234
235

    def forward(self, x, interpolation=False, use_31_block=False):
        b = x.size(0)

        # embeddings
        x = self.patch_embedding(x).flatten(2).permute(0, 2, 1)
Dongz's avatar
Dongz committed
236
        if self.pool_type in ("token", "token_fc"):
helloyongyang's avatar
helloyongyang committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
            x = torch.cat([self.cls_embedding.expand(b, -1, -1), x], dim=1)
        if interpolation:
            e = pos_interpolate(self.pos_embedding, x.size(1))
        else:
            e = self.pos_embedding
        x = self.dropout(x + e)
        if self.pre_norm is not None:
            x = self.pre_norm(x)

        # transformer
        if use_31_block:
            x = self.transformer[:-1](x)
            return x
        else:
            x = self.transformer(x)
            return x


class XLMRobertaWithHead(XLMRoberta):
    def __init__(self, **kwargs):
Dongz's avatar
Dongz committed
257
        self.out_dim = kwargs.pop("out_dim")
helloyongyang's avatar
helloyongyang committed
258
259
260
261
        super().__init__(**kwargs)

        # head
        mid_dim = (self.dim + self.out_dim) // 2
Dongz's avatar
Dongz committed
262
        self.head = nn.Sequential(nn.Linear(self.dim, mid_dim, bias=False), nn.GELU(), nn.Linear(mid_dim, self.out_dim, bias=False))
helloyongyang's avatar
helloyongyang committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

    def forward(self, ids):
        # xlm-roberta
        x = super().forward(ids)

        # average pooling
        mask = ids.ne(self.pad_id).unsqueeze(-1).to(x)
        x = (x * mask).sum(dim=1) / mask.sum(dim=1)

        # head
        x = self.head(x)
        return x


class XLMRobertaCLIP(nn.Module):
Dongz's avatar
Dongz committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    def __init__(
        self,
        embed_dim=1024,
        image_size=224,
        patch_size=14,
        vision_dim=1280,
        vision_mlp_ratio=4,
        vision_heads=16,
        vision_layers=32,
        vision_pool="token",
        vision_pre_norm=True,
        vision_post_norm=False,
        activation="gelu",
        vocab_size=250002,
        max_text_len=514,
        type_size=1,
        pad_id=1,
        text_dim=1024,
        text_heads=16,
        text_layers=24,
        text_post_norm=True,
        text_dropout=0.1,
        attn_dropout=0.0,
        proj_dropout=0.0,
        embedding_dropout=0.0,
        norm_eps=1e-5,
    ):
helloyongyang's avatar
helloyongyang committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
        super().__init__()
        self.embed_dim = embed_dim
        self.image_size = image_size
        self.patch_size = patch_size
        self.vision_dim = vision_dim
        self.vision_mlp_ratio = vision_mlp_ratio
        self.vision_heads = vision_heads
        self.vision_layers = vision_layers
        self.vision_pre_norm = vision_pre_norm
        self.vision_post_norm = vision_post_norm
        self.activation = activation
        self.vocab_size = vocab_size
        self.max_text_len = max_text_len
        self.type_size = type_size
        self.pad_id = pad_id
        self.text_dim = text_dim
        self.text_heads = text_heads
        self.text_layers = text_layers
        self.text_post_norm = text_post_norm
        self.norm_eps = norm_eps

        # models
        self.visual = VisionTransformer(
            image_size=image_size,
            patch_size=patch_size,
            dim=vision_dim,
            mlp_ratio=vision_mlp_ratio,
            out_dim=embed_dim,
            num_heads=vision_heads,
            num_layers=vision_layers,
            pool_type=vision_pool,
            pre_norm=vision_pre_norm,
            post_norm=vision_post_norm,
            activation=activation,
            attn_dropout=attn_dropout,
            proj_dropout=proj_dropout,
            embedding_dropout=embedding_dropout,
Dongz's avatar
Dongz committed
342
343
            norm_eps=norm_eps,
        )
helloyongyang's avatar
helloyongyang committed
344
345
346
347
348
349
350
351
352
353
        self.textual = XLMRobertaWithHead(
            vocab_size=vocab_size,
            max_seq_len=max_text_len,
            type_size=type_size,
            pad_id=pad_id,
            dim=text_dim,
            out_dim=embed_dim,
            num_heads=text_heads,
            num_layers=text_layers,
            post_norm=text_post_norm,
Dongz's avatar
Dongz committed
354
355
            dropout=text_dropout,
        )
helloyongyang's avatar
helloyongyang committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
        self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([]))

    def forward(self, imgs, txt_ids):
        """
        imgs:       [B, 3, H, W] of torch.float32.
        - mean:     [0.48145466, 0.4578275, 0.40821073]
        - std:      [0.26862954, 0.26130258, 0.27577711]
        txt_ids:    [B, L] of torch.long.
                    Encoded by data.CLIPTokenizer.
        """
        xi = self.visual(imgs)
        xt = self.textual(txt_ids)
        return xi, xt

    def param_groups(self):
Dongz's avatar
Dongz committed
371
372
373
374
        groups = [
            {"params": [p for n, p in self.named_parameters() if "norm" in n or n.endswith("bias")], "weight_decay": 0.0},
            {"params": [p for n, p in self.named_parameters() if not ("norm" in n or n.endswith("bias"))]},
        ]
helloyongyang's avatar
helloyongyang committed
375
376
377
        return groups


Dongz's avatar
Dongz committed
378
def _clip(pretrained=False, pretrained_name=None, model_cls=XLMRobertaCLIP, return_transforms=False, return_tokenizer=False, tokenizer_padding="eos", dtype=torch.float32, device="cpu", **kwargs):
helloyongyang's avatar
helloyongyang committed
379
380
381
382
383
384
385
386
387
388
389
    # init a model on device
    with torch.device(device):
        model = model_cls(**kwargs)

    # set device
    model = model.to(dtype=dtype, device=device)
    output = (model,)

    # init transforms
    if return_transforms:
        # mean and std
Dongz's avatar
Dongz committed
390
        if "siglip" in pretrained_name.lower():
helloyongyang's avatar
helloyongyang committed
391
392
393
394
395
396
            mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
        else:
            mean = [0.48145466, 0.4578275, 0.40821073]
            std = [0.26862954, 0.26130258, 0.27577711]

        # transforms
Dongz's avatar
Dongz committed
397
        transforms = T.Compose([T.Resize((model.image_size, model.image_size), interpolation=T.InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=mean, std=std)])
helloyongyang's avatar
helloyongyang committed
398
399
400
401
        output += (transforms,)
    return output[0] if len(output) == 1 else output


Dongz's avatar
Dongz committed
402
def clip_xlm_roberta_vit_h_14(pretrained=False, pretrained_name="open-clip-xlm-roberta-large-vit-huge-14", **kwargs):
helloyongyang's avatar
helloyongyang committed
403
404
405
406
407
408
409
410
    cfg = dict(
        embed_dim=1024,
        image_size=224,
        patch_size=14,
        vision_dim=1280,
        vision_mlp_ratio=4,
        vision_heads=16,
        vision_layers=32,
Dongz's avatar
Dongz committed
411
412
        vision_pool="token",
        activation="gelu",
helloyongyang's avatar
helloyongyang committed
413
414
415
416
417
418
419
420
421
422
423
        vocab_size=250002,
        max_text_len=514,
        type_size=1,
        pad_id=1,
        text_dim=1024,
        text_heads=16,
        text_layers=24,
        text_post_norm=True,
        text_dropout=0.1,
        attn_dropout=0.0,
        proj_dropout=0.0,
Dongz's avatar
Dongz committed
424
425
        embedding_dropout=0.0,
    )
helloyongyang's avatar
helloyongyang committed
426
427
428
429
430
431
432
433
434
435
436
437
    cfg.update(**kwargs)
    return _clip(pretrained, pretrained_name, XLMRobertaCLIP, **cfg)


class CLIPModel:
    def __init__(self, dtype, device, checkpoint_path, tokenizer_path):
        self.dtype = dtype
        self.device = device
        self.checkpoint_path = checkpoint_path
        self.tokenizer_path = tokenizer_path

        # init model
Dongz's avatar
Dongz committed
438
        self.model, self.transforms = clip_xlm_roberta_vit_h_14(pretrained=False, return_transforms=True, return_tokenizer=False, dtype=dtype, device=device)
helloyongyang's avatar
helloyongyang committed
439
        self.model = self.model.eval().requires_grad_(False)
Dongz's avatar
Dongz committed
440
441
        logging.info(f"loading {checkpoint_path}")
        self.model.load_state_dict(torch.load(checkpoint_path, map_location="cpu", weights_only=True))
helloyongyang's avatar
helloyongyang committed
442
443

        # init tokenizer
Dongz's avatar
Dongz committed
444
        self.tokenizer = HuggingfaceTokenizer(name=tokenizer_path, seq_len=self.model.max_text_len - 2, clean="whitespace")
helloyongyang's avatar
helloyongyang committed
445

gushiqiao's avatar
gushiqiao committed
446
447
448
    def visual(self, videos, args):
        if args.cpu_offload:
            self.to_cuda()
helloyongyang's avatar
helloyongyang committed
449
450
        # preprocess
        size = (self.model.image_size,) * 2
Dongz's avatar
Dongz committed
451
        videos = torch.cat([F.interpolate(u.transpose(0, 1), size=size, mode="bicubic", align_corners=False) for u in videos])
helloyongyang's avatar
helloyongyang committed
452
453
454
        videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5))

        # forward
Dongz's avatar
Dongz committed
455
        with torch.amp.autocast("cuda", dtype=self.dtype):
helloyongyang's avatar
helloyongyang committed
456
            out = self.model.visual(videos, use_31_block=True)
gushiqiao's avatar
gushiqiao committed
457
458
459
460
461
462
463
464
465
466

        if args.cpu_offload:
            self.to_cpu()
        return out

    def to_cuda(self):
        self.model = self.model.cuda()

    def to_cpu(self):
        self.model = self.model.cpu()