audio_model.py 3.53 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import torch
import time
import glob
from lightx2v.models.networks.wan.model import WanModel
from lightx2v.models.networks.wan.weights.pre_weights import WanPreWeights
from lightx2v.models.networks.wan.weights.post_weights import WanPostWeights
from lightx2v.models.networks.wan.weights.transformer_weights import (
    WanTransformerWeights,
)
from lightx2v.models.networks.wan.infer.pre_infer import WanPreInfer
from lightx2v.models.networks.wan.infer.post_infer import WanPostInfer

from lightx2v.models.networks.wan.infer.pre_infer import WanPreInfer
from lightx2v.models.networks.wan.infer.pre_wan_audio_infer import WanAudioPreInfer
from lightx2v.models.networks.wan.infer.post_wan_audio_infer import WanAudioPostInfer
from lightx2v.models.networks.wan.infer.feature_caching.transformer_infer import WanTransformerInferTeaCaching
from safetensors import safe_open
import lightx2v.attentions.distributed.ulysses.wrap as ulysses_dist_wrap
import lightx2v.attentions.distributed.ring.wrap as ring_dist_wrap

from lightx2v.models.networks.wan.infer.transformer_infer import (
    WanTransformerInfer,
)
from lightx2v.models.networks.wan.infer.feature_caching.transformer_infer import (
    WanTransformerInferTeaCaching,
)


class WanAudioModel(WanModel):
    pre_weight_class = WanPreWeights
    post_weight_class = WanPostWeights
    transformer_weight_class = WanTransformerWeights

    def __init__(self, model_path, config, device):
        super().__init__(model_path, config, device)

    def _init_infer_class(self):
        self.pre_infer_class = WanAudioPreInfer
        self.post_infer_class = WanAudioPostInfer
        if self.config["feature_caching"] == "NoCaching":
            self.transformer_infer_class = WanTransformerInfer
        elif self.config["feature_caching"] == "Tea":
            self.transformer_infer_class = WanTransformerInferTeaCaching
        else:
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config['feature_caching']}")

    @torch.no_grad()
    def infer(self, inputs):
        if self.config["cpu_offload"]:
            self.pre_weight.to_cuda()
            self.post_weight.to_cuda()

        embed, grid_sizes, pre_infer_out, valid_patch_length = self.pre_infer.infer(self.pre_weight, inputs, positive=True)
        x = self.transformer_infer.infer(self.transformer_weights, grid_sizes, embed, *pre_infer_out)
        noise_pred_cond = self.post_infer.infer(self.post_weight, x, embed, grid_sizes, valid_patch_length)[0]

        if self.config["feature_caching"] == "Tea":
            self.scheduler.cnt += 1
            if self.scheduler.cnt >= self.scheduler.num_steps:
                self.scheduler.cnt = 0
        self.scheduler.noise_pred = noise_pred_cond

        if self.config["enable_cfg"]:
            embed, grid_sizes, pre_infer_out, valid_patch_length = self.pre_infer.infer(self.pre_weight, inputs, positive=False)
            x = self.transformer_infer.infer(self.transformer_weights, grid_sizes, embed, *pre_infer_out)
            noise_pred_uncond = self.post_infer.infer(self.post_weight, x, embed, grid_sizes, valid_patch_length)[0]

            if self.config["feature_caching"] == "Tea":
                self.scheduler.cnt += 1
                if self.scheduler.cnt >= self.scheduler.num_steps:
                    self.scheduler.cnt = 0

            self.scheduler.noise_pred = noise_pred_uncond + self.config.sample_guide_scale * (noise_pred_cond - noise_pred_uncond)

            if self.config["cpu_offload"]:
                self.pre_weight.to_cpu()
                self.post_weight.to_cpu()