model.py 20.5 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
7
8
9
10
# Modified from transformers.models.t5.modeling_t5
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import logging
import math
import os
import torch
import torch.nn as nn
import torch.nn.functional as F

from .tokenizer import HuggingfaceTokenizer
root's avatar
root committed
11
from loguru import logger
12
from lightx2v.models.input_encoders.hf.q_linear import QuantLinearInt8, QuantLinearFp8
13

helloyongyang's avatar
helloyongyang committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

__all__ = [
    "T5Model",
    "T5Encoder",
    "T5Decoder",
    "T5EncoderModel",
]


def fp16_clamp(x):
    if x.dtype == torch.float16 and torch.isinf(x).any():
        clamp = torch.finfo(x.dtype).max - 1000
        x = torch.clamp(x, min=-clamp, max=clamp)
    return x


gushiqiao's avatar
gushiqiao committed
30
31
32
33
34
35
36
37
def optimize_memory_usage():
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    import gc

    gc.collect()


helloyongyang's avatar
helloyongyang committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def init_weights(m):
    if isinstance(m, T5LayerNorm):
        nn.init.ones_(m.weight)
    elif isinstance(m, T5Model):
        nn.init.normal_(m.token_embedding.weight, std=1.0)
    elif isinstance(m, T5FeedForward):
        nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5)
        nn.init.normal_(m.fc1.weight, std=m.dim**-0.5)
        nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5)
    elif isinstance(m, T5Attention):
        nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn) ** -0.5)
        nn.init.normal_(m.k.weight, std=m.dim**-0.5)
        nn.init.normal_(m.v.weight, std=m.dim**-0.5)
        nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn) ** -0.5)
    elif isinstance(m, T5RelativeEmbedding):
Dongz's avatar
Dongz committed
53
        nn.init.normal_(m.embedding.weight, std=(2 * m.num_buckets * m.num_heads) ** -0.5)
helloyongyang's avatar
helloyongyang committed
54
55
56
57


class GELU(nn.Module):
    def forward(self, x):
Dongz's avatar
Dongz committed
58
        return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
helloyongyang's avatar
helloyongyang committed
59
60
61


class T5LayerNorm(nn.Module):
gushiqiao's avatar
gushiqiao committed
62
    def __init__(self, dim, eps=1e-6, dtype=torch.float16):
helloyongyang's avatar
helloyongyang committed
63
64
65
        super(T5LayerNorm, self).__init__()
        self.dim = dim
        self.eps = eps
gushiqiao's avatar
gushiqiao committed
66
        self.weight = nn.Parameter(torch.ones(dim, dtype=dtype))
helloyongyang's avatar
helloyongyang committed
67
68
69
70
71
72
73
74
75

    def forward(self, x):
        x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) + self.eps)
        if self.weight.dtype in [torch.float16, torch.bfloat16]:
            x = x.type_as(self.weight)
        return self.weight * x


class T5Attention(nn.Module):
gushiqiao's avatar
gushiqiao committed
76
    def __init__(self, dim, dim_attn, num_heads, dropout=0.1, quantized=False, quant_scheme=None, dtype=torch.bfloat16):
helloyongyang's avatar
helloyongyang committed
77
78
79
80
81
82
83
        assert dim_attn % num_heads == 0
        super(T5Attention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.num_heads = num_heads
        self.head_dim = dim_attn // num_heads

84
85
86
        if quantized:
            if quant_scheme == "int8":
                linear_cls = QuantLinearInt8
87
88
            elif quant_scheme == "fp8":
                linear_cls = QuantLinearFp8
89
90
91
        else:
            linear_cls = nn.Linear

helloyongyang's avatar
helloyongyang committed
92
        # layers
gushiqiao's avatar
gushiqiao committed
93
94
95
96
        self.q = linear_cls(dim, dim_attn, bias=False, dtype=dtype)
        self.k = linear_cls(dim, dim_attn, bias=False, dtype=dtype)
        self.v = linear_cls(dim, dim_attn, bias=False, dtype=dtype)
        self.o = linear_cls(dim_attn, dim, bias=False, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, context=None, mask=None, pos_bias=None):
        """
        x:          [B, L1, C].
        context:    [B, L2, C] or None.
        mask:       [B, L2] or [B, L1, L2] or None.
        """
        # check inputs
        context = x if context is None else context
        b, n, c = x.size(0), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.q(x).view(b, -1, n, c)
        k = self.k(context).view(b, -1, n, c)
        v = self.v(context).view(b, -1, n, c)

        # attention bias
        attn_bias = x.new_zeros(b, n, q.size(1), k.size(1))
        if pos_bias is not None:
            attn_bias += pos_bias
        if mask is not None:
            assert mask.ndim in [2, 3]
            mask = mask.view(b, 1, 1, -1) if mask.ndim == 2 else mask.unsqueeze(1)
            attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min)

        # compute attention (T5 does not use scaling)
        attn = torch.einsum("binc,bjnc->bnij", q, k) + attn_bias
gushiqiao's avatar
gushiqiao committed
125
126
127

        if hasattr(self, "cpu_offload") and self.cpu_offload:
            del attn_bias
128
        attn = F.softmax(attn.float(), dim=-1).to(torch.bfloat16)
helloyongyang's avatar
helloyongyang committed
129
130
        x = torch.einsum("bnij,bjnc->binc", attn, v)

gushiqiao's avatar
gushiqiao committed
131
132
        if hasattr(self, "cpu_offload") and self.cpu_offload:
            del attn
helloyongyang's avatar
helloyongyang committed
133
134
135
136
137
138
139
        x = x.reshape(b, -1, n * c)
        x = self.o(x)
        x = self.dropout(x)
        return x


class T5FeedForward(nn.Module):
gushiqiao's avatar
gushiqiao committed
140
    def __init__(self, dim, dim_ffn, dropout=0.1, quantized=False, quant_scheme=None, dtype=torch.bfloat16):
helloyongyang's avatar
helloyongyang committed
141
142
143
144
        super(T5FeedForward, self).__init__()
        self.dim = dim
        self.dim_ffn = dim_ffn

145
146
147
        if quantized:
            if quant_scheme == "int8":
                linear_cls = QuantLinearInt8
148
149
            elif quant_scheme == "fp8":
                linear_cls = QuantLinearFp8
150
151
        else:
            linear_cls = nn.Linear
helloyongyang's avatar
helloyongyang committed
152
        # layers
gushiqiao's avatar
gushiqiao committed
153
154
155
        self.gate = nn.Sequential(linear_cls(dim, dim_ffn, bias=False, dtype=dtype), GELU())
        self.fc1 = linear_cls(dim, dim_ffn, bias=False, dtype=dtype)
        self.fc2 = linear_cls(dim_ffn, dim, bias=False, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
156
157
158
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
gushiqiao's avatar
gushiqiao committed
159
160
161
162
163
164
165
166
        if hasattr(self, "cpu_offload") and self.cpu_offload:
            gate_out = self.gate(x)
            fc1_out = self.fc1(x)
            x = fc1_out * gate_out
            del gate_out, fc1_out
        else:
            x = self.fc1(x) * self.gate(x)

helloyongyang's avatar
helloyongyang committed
167
168
169
170
171
172
173
        x = self.dropout(x)
        x = self.fc2(x)
        x = self.dropout(x)
        return x


class T5SelfAttention(nn.Module):
gushiqiao's avatar
gushiqiao committed
174
    def __init__(self, dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos=True, dropout=0.1, quantized=False, quant_scheme=None, dtype=torch.bfloat16):
helloyongyang's avatar
helloyongyang committed
175
176
177
178
179
180
181
182
183
        super(T5SelfAttention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
gushiqiao's avatar
gushiqiao committed
184
185
186
187
188
        self.norm1 = T5LayerNorm(dim, dtype=dtype)
        self.attn = T5Attention(dim, dim_attn, num_heads, dropout, quantized, quant_scheme, dtype)
        self.norm2 = T5LayerNorm(dim, dtype=dtype)
        self.ffn = T5FeedForward(dim, dim_ffn, dropout, quantized, quant_scheme, dtype=dtype)
        self.pos_embedding = None if shared_pos else T5RelativeEmbedding(num_buckets, num_heads, bidirectional=True, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
189
190
191

    def forward(self, x, mask=None, pos_bias=None):
        e = pos_bias if self.shared_pos else self.pos_embedding(x.size(1), x.size(1))
gushiqiao's avatar
gushiqiao committed
192
193
194
195
196
197
198
199
200
201
202
203
204

        if hasattr(self, "cpu_offload") and self.cpu_offload:
            attn_out = self.attn(self.norm1(x), mask=mask, pos_bias=e)
            x = fp16_clamp(x + attn_out)
            del attn_out

            ffn_out = self.ffn(self.norm2(x))
            x = fp16_clamp(x + ffn_out)
            del ffn_out
        else:
            x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e))
            x = fp16_clamp(x + self.ffn(self.norm2(x)))

helloyongyang's avatar
helloyongyang committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        return x


class T5CrossAttention(nn.Module):
    def __init__(
        self,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
    ):
        super(T5CrossAttention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
        self.norm1 = T5LayerNorm(dim)
        self.self_attn = T5Attention(dim, dim_attn, num_heads, dropout)
        self.norm2 = T5LayerNorm(dim)
        self.cross_attn = T5Attention(dim, dim_attn, num_heads, dropout)
        self.norm3 = T5LayerNorm(dim)
        self.ffn = T5FeedForward(dim, dim_ffn, dropout)
Dongz's avatar
Dongz committed
234
        self.pos_embedding = None if shared_pos else T5RelativeEmbedding(num_buckets, num_heads, bidirectional=False)
helloyongyang's avatar
helloyongyang committed
235

Dongz's avatar
Dongz committed
236
    def forward(self, x, mask=None, encoder_states=None, encoder_mask=None, pos_bias=None):
helloyongyang's avatar
helloyongyang committed
237
238
        e = pos_bias if self.shared_pos else self.pos_embedding(x.size(1), x.size(1))
        x = fp16_clamp(x + self.self_attn(self.norm1(x), mask=mask, pos_bias=e))
Dongz's avatar
Dongz committed
239
        x = fp16_clamp(x + self.cross_attn(self.norm2(x), context=encoder_states, mask=encoder_mask))
helloyongyang's avatar
helloyongyang committed
240
241
242
243
244
        x = fp16_clamp(x + self.ffn(self.norm3(x)))
        return x


class T5RelativeEmbedding(nn.Module):
gushiqiao's avatar
gushiqiao committed
245
    def __init__(self, num_buckets, num_heads, bidirectional, dtype=torch.bfloat16, max_dist=128):
helloyongyang's avatar
helloyongyang committed
246
247
248
249
250
251
252
        super(T5RelativeEmbedding, self).__init__()
        self.num_buckets = num_buckets
        self.num_heads = num_heads
        self.bidirectional = bidirectional
        self.max_dist = max_dist

        # layers
gushiqiao's avatar
gushiqiao committed
253
        self.embedding = nn.Embedding(num_buckets, num_heads, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
254
255
256
257
258

    def forward(self, lq, lk):
        device = self.embedding.weight.device
        # rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \
        #     torch.arange(lq).unsqueeze(1).to(device)
Dongz's avatar
Dongz committed
259
        rel_pos = torch.arange(lk, device=device).unsqueeze(0) - torch.arange(lq, device=device).unsqueeze(1)
helloyongyang's avatar
helloyongyang committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        rel_pos = self._relative_position_bucket(rel_pos)
        rel_pos_embeds = self.embedding(rel_pos)
        rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze(0)  # [1, N, Lq, Lk]
        return rel_pos_embeds.contiguous()

    def _relative_position_bucket(self, rel_pos):
        # preprocess
        if self.bidirectional:
            num_buckets = self.num_buckets // 2
            rel_buckets = (rel_pos > 0).long() * num_buckets
            rel_pos = torch.abs(rel_pos)
        else:
            num_buckets = self.num_buckets
            rel_buckets = 0
            rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos))

        # embeddings for small and large positions
        max_exact = num_buckets // 2
Dongz's avatar
Dongz committed
278
279
        rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) / math.log(self.max_dist / max_exact) * (num_buckets - max_exact)).long()
        rel_pos_large = torch.min(rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1))
helloyongyang's avatar
helloyongyang committed
280
281
282
283
284
        rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large)
        return rel_buckets


class T5Encoder(nn.Module):
gushiqiao's avatar
gushiqiao committed
285
    def __init__(self, dtype, vocab, dim, dim_attn, dim_ffn, num_heads, num_layers, num_buckets, shared_pos=True, dropout=0.1, cpu_offload=False, quantized=False, quant_scheme=None):
helloyongyang's avatar
helloyongyang committed
286
        super(T5Encoder, self).__init__()
287

288
        self.cpu_offload = cpu_offload
helloyongyang's avatar
helloyongyang committed
289
290
291
292
293
294
295
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos
296
        self.quant_scheme = quant_scheme
helloyongyang's avatar
helloyongyang committed
297
298

        # layers
gushiqiao's avatar
gushiqiao committed
299
300
        self.token_embedding = vocab.to(dtype) if isinstance(vocab, nn.Embedding) else nn.Embedding(vocab, dim, dtype=dtype)
        self.pos_embedding = T5RelativeEmbedding(num_buckets, num_heads, bidirectional=True, dtype=dtype) if shared_pos else None
helloyongyang's avatar
helloyongyang committed
301
        self.dropout = nn.Dropout(dropout)
gushiqiao's avatar
gushiqiao committed
302
        self.blocks = nn.ModuleList([T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos, dropout, quantized, quant_scheme, dtype) for _ in range(num_layers)])
gushiqiao's avatar
gushiqiao committed
303
304
305
306
307
308

        if cpu_offload:
            for block in self.blocks:
                block.cpu_offload = cpu_offload
                block.attn.cpu_offload = cpu_offload
                block.ffn.cpu_offload = cpu_offload
gushiqiao's avatar
gushiqiao committed
309
        self.norm = T5LayerNorm(dim, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
310
311

        # initialize weights
312
        # self.apply(init_weights)
helloyongyang's avatar
helloyongyang committed
313
314

    def forward(self, ids, mask=None):
315
316
        if self.cpu_offload:
            self.token_embedding = self.token_embedding.cuda()
helloyongyang's avatar
helloyongyang committed
317
        x = self.token_embedding(ids)
318
319
        if self.cpu_offload:
            self.token_embedding = self.token_embedding.cpu()
gushiqiao's avatar
gushiqiao committed
320
            optimize_memory_usage()
helloyongyang's avatar
helloyongyang committed
321
        x = self.dropout(x)
gushiqiao's avatar
gushiqiao committed
322

323
324
        if self.cpu_offload and self.pos_embedding is not None:
            self.pos_embedding = self.pos_embedding.cuda()
helloyongyang's avatar
helloyongyang committed
325
        e = self.pos_embedding(x.size(1), x.size(1)) if self.shared_pos else None
326
327
        if self.cpu_offload and self.pos_embedding is not None:
            self.pos_embedding = self.pos_embedding.cpu()
gushiqiao's avatar
gushiqiao committed
328
329
330
            optimize_memory_usage()

        for i, block in enumerate(self.blocks):
331
332
            if self.cpu_offload:
                block = block.cuda()
helloyongyang's avatar
helloyongyang committed
333
            x = block(x, mask, pos_bias=e)
334
335
            if self.cpu_offload:
                block = block.cpu()
gushiqiao's avatar
gushiqiao committed
336
337
338
                del block
                optimize_memory_usage()

339
340
        if self.cpu_offload:
            self.norm = self.norm.cuda()
helloyongyang's avatar
helloyongyang committed
341
        x = self.norm(x)
342
343
        if self.cpu_offload:
            self.norm = self.norm.cpu()
gushiqiao's avatar
gushiqiao committed
344
345
            optimize_memory_usage()

helloyongyang's avatar
helloyongyang committed
346
        x = self.dropout(x)
347
        return x.to(torch.bfloat16)
helloyongyang's avatar
helloyongyang committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372


class T5Decoder(nn.Module):
    def __init__(
        self,
        vocab,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        num_layers,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
    ):
        super(T5Decoder, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
Dongz's avatar
Dongz committed
373
374
        self.token_embedding = vocab if isinstance(vocab, nn.Embedding) else nn.Embedding(vocab, dim)
        self.pos_embedding = T5RelativeEmbedding(num_buckets, num_heads, bidirectional=False) if shared_pos else None
helloyongyang's avatar
helloyongyang committed
375
        self.dropout = nn.Dropout(dropout)
Dongz's avatar
Dongz committed
376
        self.blocks = nn.ModuleList([T5CrossAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos, dropout) for _ in range(num_layers)])
helloyongyang's avatar
helloyongyang committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
        self.norm = T5LayerNorm(dim)

        # initialize weights
        self.apply(init_weights)

    def forward(self, ids, mask=None, encoder_states=None, encoder_mask=None):
        b, s = ids.size()

        # causal mask
        if mask is None:
            mask = torch.tril(torch.ones(1, s, s).to(ids.device))
        elif mask.ndim == 2:
            mask = torch.tril(mask.unsqueeze(1).expand(-1, s, -1))

        # layers
        x = self.token_embedding(ids)
        x = self.dropout(x)
        e = self.pos_embedding(x.size(1), x.size(1)) if self.shared_pos else None
        for block in self.blocks:
            x = block(x, mask, encoder_states, encoder_mask, pos_bias=e)
        x = self.norm(x)
        x = self.dropout(x)
        return x


class T5Model(nn.Module):
    def __init__(
        self,
        vocab_size,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        encoder_layers,
        decoder_layers,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
    ):
        super(T5Model, self).__init__()
        self.vocab_size = vocab_size
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.encoder_layers = encoder_layers
        self.decoder_layers = decoder_layers
        self.num_buckets = num_buckets

        # layers
        self.token_embedding = nn.Embedding(vocab_size, dim)
        self.encoder = T5Encoder(
            self.token_embedding,
            dim,
            dim_attn,
            dim_ffn,
            num_heads,
            encoder_layers,
            num_buckets,
            shared_pos,
            dropout,
        )
        self.decoder = T5Decoder(
            self.token_embedding,
            dim,
            dim_attn,
            dim_ffn,
            num_heads,
            decoder_layers,
            num_buckets,
            shared_pos,
            dropout,
        )
        self.head = nn.Linear(dim, vocab_size, bias=False)

        # initialize weights
        self.apply(init_weights)

    def forward(self, encoder_ids, encoder_mask, decoder_ids, decoder_mask):
        x = self.encoder(encoder_ids, encoder_mask)
        x = self.decoder(decoder_ids, decoder_mask, x, encoder_mask)
        x = self.head(x)
        return x


def _t5(
    name,
    encoder_only=False,
    decoder_only=False,
    return_tokenizer=False,
    tokenizer_kwargs={},
    dtype=torch.float32,
    device="cpu",
    **kwargs,
):
    # sanity check
    assert not (encoder_only and decoder_only)

    # params
    if encoder_only:
        model_cls = T5Encoder
        kwargs["vocab"] = kwargs.pop("vocab_size")
        kwargs["num_layers"] = kwargs.pop("encoder_layers")
        _ = kwargs.pop("decoder_layers")
    elif decoder_only:
        model_cls = T5Decoder
        kwargs["vocab"] = kwargs.pop("vocab_size")
        kwargs["num_layers"] = kwargs.pop("decoder_layers")
        _ = kwargs.pop("encoder_layers")
    else:
        model_cls = T5Model

    # init model
    with torch.device(device):
gushiqiao's avatar
gushiqiao committed
491
        model = model_cls(dtype=dtype, **kwargs)
helloyongyang's avatar
helloyongyang committed
492
493

    # set device
gushiqiao's avatar
gushiqiao committed
494
    model = model.to(device=device)
495
    return model
helloyongyang's avatar
helloyongyang committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523


def umt5_xxl(**kwargs):
    cfg = dict(
        vocab_size=256384,
        dim=4096,
        dim_attn=4096,
        dim_ffn=10240,
        num_heads=64,
        encoder_layers=24,
        decoder_layers=24,
        num_buckets=32,
        shared_pos=False,
        dropout=0.1,
    )
    cfg.update(**kwargs)
    return _t5("umt5-xxl", **cfg)


class T5EncoderModel:
    def __init__(
        self,
        text_len,
        dtype=torch.bfloat16,
        device=torch.cuda.current_device(),
        checkpoint_path=None,
        tokenizer_path=None,
        shard_fn=None,
524
525
        cpu_offload=False,
        offload_granularity="model",
526
527
528
        t5_quantized=False,
        t5_quantized_ckpt=None,
        quant_scheme=None,
helloyongyang's avatar
helloyongyang committed
529
530
531
532
    ):
        self.text_len = text_len
        self.dtype = dtype
        self.device = device
533
534
535
536
        if t5_quantized_ckpt is not None and t5_quantized:
            self.checkpoint_path = t5_quantized_ckpt
        else:
            self.checkpoint_path = checkpoint_path
helloyongyang's avatar
helloyongyang committed
537
        self.tokenizer_path = tokenizer_path
538
539
540
541
542
543
        self.offload_granularity = offload_granularity

        # sync cpu offload
        self.cpu_offload = cpu_offload
        if self.cpu_offload:
            assert self.offload_granularity in ["block", "model"]
helloyongyang's avatar
helloyongyang committed
544

545
546
547
548
549
550
        model = (
            umt5_xxl(
                encoder_only=True,
                return_tokenizer=False,
                dtype=dtype,
                device=device,
551
552
553
                cpu_offload=(cpu_offload if self.offload_granularity == "block" else False),
                quantized=t5_quantized,
                quant_scheme=quant_scheme,
554
555
556
557
            )
            .eval()
            .requires_grad_(False)
        )
558

gushiqiao's avatar
gushiqiao committed
559
        logger.info(f"Start Loading weights from {self.checkpoint_path}")
560
        model.load_state_dict(torch.load(self.checkpoint_path, map_location="cpu", weights_only=True))
gushiqiao's avatar
gushiqiao committed
561
562
        logger.info(f"End Loading weights from {self.checkpoint_path}")

helloyongyang's avatar
helloyongyang committed
563
564
565
566
567
568
        self.model = model
        if shard_fn is not None:
            self.model = shard_fn(self.model, sync_module_states=False)
        else:
            self.model.to(self.device)
        # init tokenizer
Dongz's avatar
Dongz committed
569
        self.tokenizer = HuggingfaceTokenizer(name=tokenizer_path, seq_len=text_len, clean="whitespace")
helloyongyang's avatar
helloyongyang committed
570

TorynCurtis's avatar
TorynCurtis committed
571
572
573
574
575
576
    def to_cpu(self):
        self.model = self.model.to("cpu")

    def to_cuda(self):
        self.model = self.model.to("cuda")

gushiqiao's avatar
gushiqiao committed
577
578
579
580
    def optimize_memory(self):
        """优化内存使用"""
        optimize_memory_usage()

581
582
    def infer(self, texts):
        if self.cpu_offload and self.offload_granularity == "model":
TorynCurtis's avatar
TorynCurtis committed
583
584
            self.to_cuda()

helloyongyang's avatar
helloyongyang committed
585
586
587
588
        ids, mask = self.tokenizer(texts, return_mask=True, add_special_tokens=True)
        ids = ids.cuda()
        mask = mask.cuda()
        seq_lens = mask.gt(0).sum(dim=1).long()
gushiqiao's avatar
gushiqiao committed
589
590
591

        with torch.no_grad():
            context = self.model(ids, mask)
TorynCurtis's avatar
TorynCurtis committed
592

593
        if self.cpu_offload and self.offload_granularity == "model":
TorynCurtis's avatar
TorynCurtis committed
594
            self.to_cpu()
gushiqiao's avatar
gushiqiao committed
595
596
597
598
599
            optimize_memory_usage()

        del ids, mask
        if self.cpu_offload:
            optimize_memory_usage()
TorynCurtis's avatar
TorynCurtis committed
600

helloyongyang's avatar
helloyongyang committed
601
602
603
604
        return [u[:v] for u, v in zip(context, seq_lens)]


if __name__ == "__main__":
605
    checkpoint_dir = ""
helloyongyang's avatar
helloyongyang committed
606
607
608
609
610
611
612
613
614
615
616
617
    t5_checkpoint = "models_t5_umt5-xxl-enc-bf16.pth"
    t5_tokenizer = "google/umt5-xxl"
    model = T5EncoderModel(
        text_len=512,
        dtype=torch.bfloat16,
        device=torch.device("cuda"),
        checkpoint_path=os.path.join(checkpoint_dir, t5_checkpoint),
        tokenizer_path=os.path.join(checkpoint_dir, t5_tokenizer),
        shard_fn=None,
    )
    text = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
    outputs = model.infer(text)
root's avatar
root committed
618
    logger.info(outputs)