quant_utils.py 6.92 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
import torch
from qtorch.quant import float_quantize
root's avatar
root committed
3
from loguru import logger
helloyongyang's avatar
helloyongyang committed
4
5
6
7
8
9
10
11


class BaseQuantizer(object):
    def __init__(self, bit, symmetric, granularity, **kwargs):
        self.bit = bit
        self.sym = symmetric
        self.granularity = granularity
        self.kwargs = kwargs
Dongz's avatar
Dongz committed
12
13
14
        if self.granularity == "per_group":
            self.group_size = self.kwargs["group_size"]
        self.calib_algo = self.kwargs.get("calib_algo", "minmax")
helloyongyang's avatar
helloyongyang committed
15
16

    def get_tensor_range(self, tensor):
Dongz's avatar
Dongz committed
17
        if self.calib_algo == "minmax":
helloyongyang's avatar
helloyongyang committed
18
            return self.get_minmax_range(tensor)
Dongz's avatar
Dongz committed
19
        elif self.calib_algo == "mse":
helloyongyang's avatar
helloyongyang committed
20
21
            return self.get_mse_range(tensor)
        else:
Dongz's avatar
Dongz committed
22
            raise ValueError(f"Unsupported calibration algorithm: {self.calib_algo}")
helloyongyang's avatar
helloyongyang committed
23
24

    def get_minmax_range(self, tensor):
Dongz's avatar
Dongz committed
25
        if self.granularity == "per_tensor":
helloyongyang's avatar
helloyongyang committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
            max_val = torch.max(tensor)
            min_val = torch.min(tensor)
        else:
            max_val = tensor.amax(dim=-1, keepdim=True)
            min_val = tensor.amin(dim=-1, keepdim=True)
        return (min_val, max_val)

    def get_mse_range(self, tensor):
        raise NotImplementedError

    def get_qparams(self, tensor_range, device):
        min_val, max_val = tensor_range[0], tensor_range[1]
        qmin = self.qmin.to(device)
        qmax = self.qmax.to(device)
        if self.sym:
            abs_max = torch.max(max_val.abs(), min_val.abs())
            abs_max = abs_max.clamp(min=1e-5)
            scales = abs_max / qmax
            zeros = torch.tensor(0.0)
        else:
            scales = (max_val - min_val).clamp(min=1e-5) / (qmax - qmin)
            zeros = (qmin - torch.round(min_val / scales)).clamp(qmin, qmax)
        return scales, zeros, qmax, qmin

    def reshape_tensor(self, tensor, allow_padding=False):
Dongz's avatar
Dongz committed
51
        if self.granularity == "per_group":
helloyongyang's avatar
helloyongyang committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
            t = tensor.reshape(-1, self.group_size)
        else:
            t = tensor
        return t

    def restore_tensor(self, tensor, shape):
        if tensor.shape == shape:
            t = tensor
        else:
            t = tensor.reshape(shape)
        return t

    def get_tensor_qparams(self, tensor):
        tensor = self.reshape_tensor(tensor)
        tensor_range = self.get_tensor_range(tensor)
        scales, zeros, qmax, qmin = self.get_qparams(tensor_range, tensor.device)
        return tensor, scales, zeros, qmax, qmin

    def fake_quant_tensor(self, tensor):
        org_shape = tensor.shape
        org_dtype = tensor.dtype
        tensor, scales, zeros, qmax, qmin = self.get_tensor_qparams(tensor)
        tensor = self.quant_dequant(tensor, scales, zeros, qmax, qmin)
        tensor = self.restore_tensor(tensor, org_shape).to(org_dtype)
        return tensor

    def real_quant_tensor(self, tensor):
        org_shape = tensor.shape
        tensor, scales, zeros, qmax, qmin = self.get_tensor_qparams(tensor)
        tensor = self.quant(tensor, scales, zeros, qmax, qmin)
        tensor = self.restore_tensor(tensor, org_shape)
Dongz's avatar
Dongz committed
83
        if self.sym:
helloyongyang's avatar
helloyongyang committed
84
85
86
87
88
89
90
            zeros = None
        return tensor, scales, zeros


class IntegerQuantizer(BaseQuantizer):
    def __init__(self, bit, symmetric, granularity, **kwargs):
        super().__init__(bit, symmetric, granularity, **kwargs)
Dongz's avatar
Dongz committed
91
92
93
        if "int_range" in self.kwargs:
            self.qmin = self.kwargs["int_range"][0]
            self.qmax = self.kwargs["int_range"][1]
helloyongyang's avatar
helloyongyang committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        else:
            if self.sym:
                self.qmin = -(2 ** (self.bit - 1))
                self.qmax = 2 ** (self.bit - 1) - 1
            else:
                self.qmin = 0.0
                self.qmax = 2**self.bit - 1

        self.qmin = torch.tensor(self.qmin)
        self.qmax = torch.tensor(self.qmax)
        self.dst_nbins = 2**bit

    def quant(self, tensor, scales, zeros, qmax, qmin):
        tensor = torch.clamp(torch.round(tensor / scales) + zeros, qmin, qmax)
        return tensor

    def dequant(self, tensor, scales, zeros):
        tensor = (tensor - zeros) * scales
        return tensor

Dongz's avatar
Dongz committed
114
115
116
117
118
119
120
121
    def quant_dequant(
        self,
        tensor,
        scales,
        zeros,
        qmax,
        qmin,
    ):
helloyongyang's avatar
helloyongyang committed
122
123
124
125
126
127
128
129
        tensor = self.quant(tensor, scales, zeros, qmax, qmin)
        tensor = self.dequant(tensor, scales, zeros)
        return tensor


class FloatQuantizer(BaseQuantizer):
    def __init__(self, bit, symmetric, granularity, **kwargs):
        super().__init__(bit, symmetric, granularity, **kwargs)
Dongz's avatar
Dongz committed
130
131
132
133
        assert self.bit in ["e4m3", "e5m2"], f"Unsupported bit configuration: {self.bit}"
        assert self.sym

        if self.bit == "e4m3":
helloyongyang's avatar
helloyongyang committed
134
135
136
            self.e_bits = 4
            self.m_bits = 3
            self.fp_dtype = torch.float8_e4m3fn
Dongz's avatar
Dongz committed
137
        elif self.bit == "e5m2":
helloyongyang's avatar
helloyongyang committed
138
139
140
141
            self.e_bits = 5
            self.m_bits = 2
            self.fp_dtype = torch.float8_e5m2
        else:
Dongz's avatar
Dongz committed
142
            raise ValueError(f"Unsupported bit configuration: {self.bit}")
helloyongyang's avatar
helloyongyang committed
143
144
145
146
147
148
149
150
151

        finfo = torch.finfo(self.fp_dtype)
        self.qmin, self.qmax = finfo.min, finfo.max

        self.qmax = torch.tensor(self.qmax)
        self.qmin = torch.tensor(self.qmin)

    def quant(self, tensor, scales, zeros, qmax, qmin):
        scaled_tensor = tensor / scales + zeros
Dongz's avatar
Dongz committed
152
        scaled_tensor = torch.clip(scaled_tensor, self.qmin.cuda(), self.qmax.cuda())
helloyongyang's avatar
helloyongyang committed
153
        org_dtype = scaled_tensor.dtype
Dongz's avatar
Dongz committed
154
        q_tensor = float_quantize(scaled_tensor.float(), self.e_bits, self.m_bits, rounding="nearest")
helloyongyang's avatar
helloyongyang committed
155
156
157
158
159
160
161
162
163
164
165
166
167
        q_tensor.to(org_dtype)
        return q_tensor

    def dequant(self, tensor, scales, zeros):
        tensor = (tensor - zeros) * scales
        return tensor

    def quant_dequant(self, tensor, scales, zeros, qmax, qmin):
        tensor = self.quant(tensor, scales, zeros, qmax, qmin)
        tensor = self.dequant(tensor, scales, zeros)
        return tensor


Dongz's avatar
Dongz committed
168
if __name__ == "__main__":
helloyongyang's avatar
helloyongyang committed
169
    weight = torch.randn(4096, 4096, dtype=torch.bfloat16).cuda()
Dongz's avatar
Dongz committed
170
    quantizer = IntegerQuantizer(4, False, "per_group", group_size=128)
helloyongyang's avatar
helloyongyang committed
171
    q_weight = quantizer.fake_quant_tensor(weight)
root's avatar
root committed
172
173
174
    logger.info(weight)
    logger.info(q_weight)
    logger.info(f"cosine = {torch.cosine_similarity(weight.view(1, -1).to(torch.float64), q_weight.view(1, -1).to(torch.float64))}")
Dongz's avatar
Dongz committed
175

helloyongyang's avatar
helloyongyang committed
176
    realq_weight, scales, zeros = quantizer.real_quant_tensor(weight)
root's avatar
root committed
177
178
179
    logger.info(f"realq_weight = {realq_weight}, {realq_weight.shape}")
    logger.info(f"scales = {scales}, {scales.shape}")
    logger.info(f"zeros = {zeros}, {zeros.shape}")
helloyongyang's avatar
helloyongyang committed
180
181

    weight = torch.randn(8192, 4096, dtype=torch.bfloat16).cuda()
Dongz's avatar
Dongz committed
182
    quantizer = FloatQuantizer("e4m3", True, "per_channel")
helloyongyang's avatar
helloyongyang committed
183
    q_weight = quantizer.fake_quant_tensor(weight)
root's avatar
root committed
184
185
186
    logger.info(weight)
    logger.info(q_weight)
    logger.info(f"cosine = {torch.cosine_similarity(weight.view(1, -1).to(torch.float64), q_weight.view(1, -1).to(torch.float64))}")
helloyongyang's avatar
helloyongyang committed
187
188

    realq_weight, scales, zeros = quantizer.real_quant_tensor(weight)
root's avatar
root committed
189
190
191
    logger.info(f"realq_weight = {realq_weight}, {realq_weight.shape}")
    logger.info(f"scales = {scales}, {scales.shape}")
    logger.info(f"zeros = {zeros}")