README.md 8.13 KB
Newer Older
Harahan's avatar
Harahan committed
1
<div align="center" style="font-family: charter;">
gushiqiao's avatar
gushiqiao committed
2
  <h1>⚡️ LightX2V:<br> Lightweight Video Generation Inference Framework</h1>
helloyongyang's avatar
helloyongyang committed
3

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
4
<img alt="logo" src="assets/img_lightx2v.png" width=75%></img>
helloyongyang's avatar
helloyongyang committed
5

helloyongyang's avatar
helloyongyang committed
6
[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
PengGao's avatar
PengGao committed
7
[![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/ModelTC/lightx2v)
helloyongyang's avatar
helloyongyang committed
8
9
[![Doc](https://img.shields.io/badge/docs-English-99cc2)](https://lightx2v-en.readthedocs.io/en/latest)
[![Doc](https://img.shields.io/badge/文档-中文-99cc2)](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest)
helloyongyang's avatar
helloyongyang committed
10
[![Papers](https://img.shields.io/badge/论文集-中文-99cc2)](https://lightx2v-papers-zhcn.readthedocs.io/zh-cn/latest)
helloyongyang's avatar
helloyongyang committed
11
[![Docker](https://badgen.net/badge/icon/docker?icon=docker&label)](https://hub.docker.com/r/lightx2v/lightx2v/tags)
PengGao's avatar
PengGao committed
12

helloyongyang's avatar
helloyongyang committed
13
**\[ English | [中文](README_zh.md) \]**
Harahan's avatar
Harahan committed
14

helloyongyang's avatar
helloyongyang committed
15
16
17
</div>

--------------------------------------------------------------------------------
helloyongyang's avatar
helloyongyang committed
18

gushiqiao's avatar
gushiqiao committed
19
**LightX2V** is an advanced lightweight video generation inference framework engineered to deliver efficient, high-performance video synthesis solutions. This unified platform integrates multiple state-of-the-art video generation techniques, supporting diverse generation tasks including text-to-video (T2V) and image-to-video (I2V). **X2V represents the transformation of different input modalities (X, such as text or images) into video output (V)**.
helloyongyang's avatar
helloyongyang committed
20

helloyongyang's avatar
helloyongyang committed
21
22
23
24
## 💡 Quick Start

For comprehensive usage instructions, please refer to our documentation: **[English Docs](https://lightx2v-en.readthedocs.io/en/latest/) | [中文文档](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/)**

helloyongyang's avatar
helloyongyang committed
25

gushiqiao's avatar
gushiqiao committed
26
27
28
29
30
## 🤖 Supported Model Ecosystem

### Official Open-Source Models
-[HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo)
-[Wan2.1](https://huggingface.co/Wan-AI/)
Harahan's avatar
Harahan committed
31
32
-[SkyReels-V2-DF](https://huggingface.co/Skywork/SkyReels-V2-DF-14B-540P)
-[CogVideoX1.5-5B-T2V](https://huggingface.co/THUDM/CogVideoX1.5-5B)
helloyongyang's avatar
helloyongyang committed
33

gushiqiao's avatar
gushiqiao committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
### Quantized Models
-[Wan2.1-T2V-1.3B-Lightx2v](https://huggingface.co/lightx2v/Wan2.1-T2V-1.3B-Lightx2v)
-[Wan2.1-T2V-14B-Lightx2v](https://huggingface.co/lightx2v/Wan2.1-T2V-14B-Lightx2v)
-[Wan2.1-I2V-14B-480P-Lightx2v](https://huggingface.co/lightx2v/Wan2.1-I2V-14B-480P-Lightx2v)
-[Wan2.1-I2V-14B-720P-Lightx2v](https://huggingface.co/lightx2v/Wan2.1-I2V-14B-720P-Lightx2v)

### Distilled Models (**🚀 Recommended: 4-step inference**)
-[Wan2.1-T2V-14B-StepDistill-CfgDistill-Lightx2v](https://huggingface.co/lightx2v/Wan2.1-T2V-14B-StepDistill-CfgDistill-Lightx2v)
-[Wan2.1-I2V-14B-480P-StepDistill-CfgDistill-Lightx2v](https://huggingface.co/lightx2v/Wan2.1-I2V-14B-480P-StepDistill-CfgDistill-Lightx2v)
-[Wan2.1-I2V-14B-720P-StepDistill-CfgDistill-Lightx2v](https://huggingface.co/lightx2v/Wan2.1-I2V-14B-720P-StepDistill-CfgDistill-Lightx2v)

### Autoregressive Models
-[Wan2.1-T2V-CausVid](https://huggingface.co/lightx2v/Wan2.1-T2V-14B-CausVid)

gushiqiao's avatar
gushiqiao committed
48
49
50
51

## 🚀 Core Features

### 🎯 **Ultimate Performance Optimization**
gushiqiao's avatar
gushiqiao committed
52
- **🔥 SOTA Inference Speed**: Achieve **~20x** acceleration via step distillation and system optimization (single GPU)
gushiqiao's avatar
gushiqiao committed
53
54
55
56
57
58
59
60
61
62
63
64
65
- **⚡️ Revolutionary 4-Step Distillation**: Compress original 40-50 step inference to just 4 steps without CFG requirements
- **🛠️ Advanced Operator Support**: Integrated with cutting-edge operators including [Sage Attention](https://github.com/thu-ml/SageAttention), [Flash Attention](https://github.com/Dao-AILab/flash-attention), [Radial Attention](https://github.com/mit-han-lab/radial-attention), [q8-kernel](https://github.com/KONAKONA666/q8_kernels), [sgl-kernel](https://github.com/sgl-project/sglang/tree/main/sgl-kernel), [vllm](https://github.com/vllm-project/vllm)

### 💾 **Resource-Efficient Deployment**
- **💡 Breaking Hardware Barriers**: Run 14B models for 480P/720P video generation with only **8GB VRAM + 16GB RAM**
- **🔧 Intelligent Parameter Offloading**: Advanced disk-CPU-GPU three-tier offloading architecture with phase/block-level granular management
- **⚙️ Comprehensive Quantization**: Support for `w8a8-int8`, `w8a8-fp8`, `w4a4-nvfp4` and other quantization strategies

### 🎨 **Rich Feature Ecosystem**
- **📈 Smart Feature Caching**: Intelligent caching mechanisms to eliminate redundant computations
- **🔄 Parallel Inference**: Multi-GPU parallel processing for enhanced performance
- **📱 Flexible Deployment Options**: Support for Gradio, service deployment, ComfyUI and other deployment methods
- **🎛️ Dynamic Resolution Inference**: Adaptive resolution adjustment for optimal generation quality
PengGao's avatar
PengGao committed
66
- **🎞️ Video Frame Interpolation**: RIFE-based frame interpolation for smooth frame rate enhancement
gushiqiao's avatar
gushiqiao committed
67
68


gushiqiao's avatar
gushiqiao committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
## 🏆 Performance Benchmarks

For detailed performance metrics and comparisons, please refer to our [benchmark documentation](https://github.com/ModelTC/LightX2V/blob/main/docs/EN/source/getting_started/benchmark_source.md).

[Detailed Service Deployment Guide →](https://lightx2v-en.readthedocs.io/en/latest/deploy_guides/deploy_service.html)

## 📚 Technical Documentation

### 📖 **Method Tutorials**
- [Model Quantization](https://lightx2v-en.readthedocs.io/en/latest/method_tutorials/quantization.html) - Comprehensive guide to quantization strategies
- [Feature Caching](https://lightx2v-en.readthedocs.io/en/latest/method_tutorials/cache.html) - Intelligent caching mechanisms
- [Attention Mechanisms](https://lightx2v-en.readthedocs.io/en/latest/method_tutorials/attention.html) - State-of-the-art attention operators
- [Parameter Offloading](https://lightx2v-en.readthedocs.io/en/latest/method_tutorials/offload.html) - Three-tier storage architecture
- [Parallel Inference](https://lightx2v-en.readthedocs.io/en/latest/method_tutorials/parallel.html) - Multi-GPU acceleration strategies
- [Step Distillation](https://lightx2v-en.readthedocs.io/en/latest/method_tutorials/step_distill.html) - 4-step inference technology
PengGao's avatar
PengGao committed
84
- [Video Frame Interpolation](https://lightx2v-en.readthedocs.io/en/latest/method_tutorials/video_frame_interpolation.html) - RIFE-based frame interpolation
gushiqiao's avatar
gushiqiao committed
85
86
87
88
89
90

### 🛠️ **Deployment Guides**
- [Low-Resource Deployment](https://lightx2v-en.readthedocs.io/en/latest/deploy_guides/for_low_resource.html) - Optimized 8GB VRAM solutions
- [Low-Latency Deployment](https://lightx2v-en.readthedocs.io/en/latest/deploy_guides/for_low_latency.html) - Ultra-fast inference optimization
- [Gradio Deployment](https://lightx2v-en.readthedocs.io/en/latest/deploy_guides/deploy_gradio.html) - Web interface setup
- [Service Deployment](https://lightx2v-en.readthedocs.io/en/latest/deploy_guides/deploy_service.html) - Production API service deployment
helloyongyang's avatar
helloyongyang committed
91

Harahan's avatar
Harahan committed
92
## 🧾 Contributing Guidelines
helloyongyang's avatar
helloyongyang committed
93

gushiqiao's avatar
gushiqiao committed
94
We maintain code quality through automated pre-commit hooks to ensure consistent formatting across the project.
helloyongyang's avatar
helloyongyang committed
95

Harahan's avatar
Harahan committed
96
> [!TIP]
gushiqiao's avatar
gushiqiao committed
97
> **Setup Instructions:**
Harahan's avatar
Harahan committed
98
>
gushiqiao's avatar
gushiqiao committed
99
> 1. Install required dependencies:
Harahan's avatar
Harahan committed
100
101
> ```shell
> pip install ruff pre-commit
gushiqiao's avatar
gushiqiao committed
102
> ```
Harahan's avatar
Harahan committed
103
>
gushiqiao's avatar
gushiqiao committed
104
> 2. Run before committing:
Harahan's avatar
Harahan committed
105
106
> ```shell
> pre-commit run --all-files
gushiqiao's avatar
gushiqiao committed
107
> ```
Dongz's avatar
Dongz committed
108

gushiqiao's avatar
gushiqiao committed
109
We appreciate your contributions to making LightX2V better!
Dongz's avatar
Dongz committed
110

Harahan's avatar
Harahan committed
111
## 🤝 Acknowledgments
Dongz's avatar
Dongz committed
112

gushiqiao's avatar
gushiqiao committed
113
We extend our gratitude to all the model repositories and research communities that inspired and contributed to the development of LightX2V. This framework builds upon the collective efforts of the open-source community.
Dongz's avatar
Dongz committed
114

Harahan's avatar
Harahan committed
115
## 🌟 Star History
Dongz's avatar
Dongz committed
116

gushiqiao's avatar
gushiqiao committed
117
[![Star History Chart](https://api.star-history.com/svg?repos=ModelTC/lightx2v&type=Timeline)](https://star-history.com/#ModelTC/lightx2v&Timeline)
helloyongyang's avatar
helloyongyang committed
118

Harahan's avatar
Harahan committed
119
## ✏️ Citation
helloyongyang's avatar
helloyongyang committed
120

gushiqiao's avatar
gushiqiao committed
121
If you find LightX2V useful in your research, please consider citing our work:
helloyongyang's avatar
helloyongyang committed
122

gushiqiao's avatar
gushiqiao committed
123
```bibtex
Harahan's avatar
Harahan committed
124
@misc{lightx2v,
gushiqiao's avatar
gushiqiao committed
125
 author = {LightX2V Contributors},
helloyongyang's avatar
helloyongyang committed
126
 title = {LightX2V: Light Video Generation Inference Framework},
Harahan's avatar
Harahan committed
127
 year = {2025},
Harahan's avatar
Harahan committed
128
129
130
131
132
 publisher = {GitHub},
 journal = {GitHub repository},
 howpublished = {\url{https://github.com/ModelTC/lightx2v}},
}
```
gushiqiao's avatar
gushiqiao committed
133
134
135
136
137
138
139
140
141
142
143
144

## 📞 Contact & Support

For questions, suggestions, or support, please feel free to reach out through:
- 🐛 [GitHub Issues](https://github.com/ModelTC/lightx2v/issues) - Bug reports and feature requests
- 💬 [GitHub Discussions](https://github.com/ModelTC/lightx2v/discussions) - Community discussions and Q&A

---

<div align="center">
Built with ❤️ by the LightX2V team
</div>