main.py 12.2 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import argparse
import torch
import torch.distributed as dist
import os
import time
import gc
import json
import torchvision.transforms.functional as TF
import numpy as np
from PIL import Image
from lightx2v.text2v.models.text_encoders.hf.llama.model import TextEncoderHFLlamaModel
from lightx2v.text2v.models.text_encoders.hf.clip.model import TextEncoderHFClipModel
from lightx2v.text2v.models.text_encoders.hf.t5.model import T5EncoderModel

from lightx2v.text2v.models.schedulers.hunyuan.scheduler import HunyuanScheduler
from lightx2v.text2v.models.schedulers.hunyuan.feature_caching.scheduler import HunyuanSchedulerFeatureCaching
from lightx2v.text2v.models.schedulers.wan.scheduler import WanScheduler
from lightx2v.text2v.models.schedulers.wan.feature_caching.scheduler import WanSchedulerFeatureCaching

from lightx2v.text2v.models.networks.hunyuan.model import HunyuanModel
from lightx2v.text2v.models.networks.wan.model import WanModel

from lightx2v.text2v.models.video_encoders.hf.autoencoder_kl_causal_3d.model import VideoEncoderKLCausal3DModel
from lightx2v.text2v.models.video_encoders.hf.wan.vae import WanVAE
from lightx2v.utils.utils import save_videos_grid, seed_all, cache_video
from lightx2v.common.ops import *
from lightx2v.image2v.models.wan.model import CLIPModel


def load_models(args, model_config):
    if model_config['parallel_attn']:
        cur_rank = dist.get_rank()  # 获取当前进程的 rank
        torch.cuda.set_device(cur_rank)  # 设置当前进程的 CUDA 设备
    image_encoder = None
    if args.cpu_offload:
        init_device = torch.device("cpu")
    else:
        init_device = torch.device("cuda")

    if args.model_cls == "hunyuan":
        text_encoder_1 = TextEncoderHFLlamaModel(os.path.join(args.model_path, "text_encoder"), init_device)
        text_encoder_2 = TextEncoderHFClipModel(os.path.join(args.model_path, "text_encoder_2"), init_device)
        text_encoders = [text_encoder_1, text_encoder_2]
        model = HunyuanModel(args.model_path, model_config)
        vae_model = VideoEncoderKLCausal3DModel(args.model_path, dtype=torch.float16, device=init_device)

    elif args.model_cls == "wan2.1":
        text_encoder = T5EncoderModel(
            text_len=model_config["text_len"],
            dtype=torch.bfloat16,
            device=torch.device("cuda"),
            checkpoint_path=os.path.join(args.model_path, "models_t5_umt5-xxl-enc-bf16.pth"),
            tokenizer_path=os.path.join(args.model_path, "google/umt5-xxl"),
            shard_fn=None,
        )
        text_encoders = [text_encoder]
        model = WanModel(args.model_path, model_config)
        vae_model = WanVAE(vae_pth=os.path.join(args.model_path, "Wan2.1_VAE.pth"), device=torch.device("cuda"))
        if args.task == 'i2v':
            image_encoder = CLIPModel(
                dtype=torch.float16,
                device=torch.device("cuda"),
                checkpoint_path=os.path.join(args.model_path,
                                            "models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth"),
                tokenizer_path=os.path.join(args.model_path, "xlm-roberta-large"))
    else:
        raise NotImplementedError(f"Unsupported model class: {args.model_cls}")

    return model, text_encoders, vae_model, image_encoder


def set_target_shape(args):
    if args.model_cls == 'hunyuan':
        vae_scale_factor = 2 ** (4 - 1)
        args.target_shape = (
            1,
            16,
            (args.target_video_length - 1) // 4 + 1,
            int(args.target_height) // vae_scale_factor,
            int(args.target_width) // vae_scale_factor,
        )
    elif args.model_cls == 'wan2.1':
        if args.task == 'i2v':
            args.target_shape = (
                16,
                21,
                args.lat_h,
                args.lat_w
            )
        elif args.task == 't2v':
            args.target_shape = (
                16,
                (args.target_video_length - 1) // 4 + 1,
                int(args.target_height) // args.vae_stride[1],
                int(args.target_width) // args.vae_stride[2],
            )


def run_image_encoder(args, image_encoder, vae_model):
    if args.model_cls == "hunyuan":
        return None
    elif args.model_cls == 'wan2.1':
        img = Image.open(args.image_path).convert("RGB")
        img = TF.to_tensor(img).sub_(0.5).div_(0.5).cuda()
        clip_encoder_out = image_encoder.visual([img[:, None, :, :]]).squeeze(0).to(torch.bfloat16)

        h, w = img.shape[1:]
        aspect_ratio = h / w
        max_area = args.target_height * args.target_width
        lat_h = round(
            np.sqrt(max_area * aspect_ratio) // args.vae_stride[1] //
            args.patch_size[1] * args.patch_size[1])
        lat_w = round(
            np.sqrt(max_area / aspect_ratio) // args.vae_stride[2] //
            args.patch_size[2] * args.patch_size[2])
        h = lat_h * args.vae_stride[1]
        w = lat_w * args.vae_stride[2]

        args.lat_h = lat_h
        args.lat_w = lat_w
        
        msk = torch.ones(1, 81, lat_h, lat_w, device=torch.device('cuda'))
        msk[:, 1:] = 0
        msk = torch.concat([
            torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
        ], dim=1)
        msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
        msk = msk.transpose(1, 2)[0]

        vae_encode_out = vae_model.encode([
            torch.concat([
                torch.nn.functional.interpolate(
                    img[None].cpu(), size=(h, w), mode='bicubic').transpose(
                        0, 1),
                torch.zeros(3, 80, h, w)
            ], dim=1).cuda()
        ])[0]
        vae_encode_out = torch.concat([msk, vae_encode_out]).to(torch.bfloat16)
        return {"clip_encoder_out": clip_encoder_out, "vae_encode_out": vae_encode_out}

    else:
        raise NotImplementedError(f"Unsupported model class: {model_cls}")


def run_text_encoder(args, text, text_encoders, model_config):
    text_encoder_output = {}
    if args.model_cls == "hunyuan":
        for i, encoder in enumerate(text_encoders):
            text_state, attention_mask = encoder.infer(text, args)
            text_encoder_output[f"text_encoder_{i+1}_text_states"] = text_state.to(dtype=torch.bfloat16)
            text_encoder_output[f"text_encoder_{i+1}_attention_mask"] = attention_mask

    elif args.model_cls == "wan2.1":
        n_prompt = model_config.get("sample_neg_prompt", "")
        context = text_encoders[0].infer([text], args)
        context_null = text_encoders[0].infer([n_prompt if n_prompt else ""], args)
        text_encoder_output["context"] = context
        text_encoder_output["context_null"] = context_null

    else:
        raise NotImplementedError(f"Unsupported model type: {args.model_cls}")

    return text_encoder_output


def init_scheduler(args):
    if args.model_cls == "hunyuan":
        if args.feature_caching == "NoCaching":
            scheduler = HunyuanScheduler(args)
        elif args.feature_caching == "TaylorSeer":
            scheduler = HunyuanSchedulerFeatureCaching(args)
        else:
            raise NotImplementedError(f"Unsupported feature_caching type: {args.feature_caching}")

    elif args.model_cls == "wan2.1":
        if args.feature_caching == "NoCaching":
            scheduler = WanScheduler(args)
        elif args.feature_caching == "Tea":
            scheduler = WanSchedulerFeatureCaching(args)
        else:
            raise NotImplementedError(f"Unsupported feature_caching type: {args.feature_caching}")

    else:
        raise NotImplementedError(f"Unsupported model class: {args.model_cls}")
    return scheduler


def run_main_inference(args, model, text_encoder_output, image_encoder_output):

    for step_index in range(model.scheduler.infer_steps):
        torch.cuda.synchronize()
        time1 = time.time()

        model.scheduler.step_pre(step_index=step_index)

        torch.cuda.synchronize()
        time2 = time.time()

        model.infer(text_encoder_output, image_encoder_output, args)

        torch.cuda.synchronize()
        time3 = time.time()

        model.scheduler.step_post()

        torch.cuda.synchronize()
        time4 = time.time()

        print(f"step {step_index} infer time: {time3 - time2}")
        print(f"step {step_index} all time: {time4 - time1}")
        print("*" * 10)

    return model.scheduler.latents, model.scheduler.generator


def run_vae(latents, generator, args):
    images = vae_model.decode(latents, generator=generator, args=args)
    return images


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_cls", type=str, required=True, choices=["wan2.1", "hunyuan"], default="hunyuan")
    parser.add_argument("--task", type=str, choices=["t2v", "i2v"], default="t2v")
    parser.add_argument("--model_path", type=str, required=True)
    parser.add_argument("--config_path", type=str, default=None)
    parser.add_argument("--image_path", type=str, default=None)
    parser.add_argument('--save_video_path', type=str, default='./output_ligthx2v.mp4')
    parser.add_argument("--prompt", type=str, required=True)
    parser.add_argument("--infer_steps", type=int, required=True)
    parser.add_argument("--target_video_length", type=int, required=True)
    parser.add_argument("--target_width", type=int, required=True)
    parser.add_argument("--target_height", type=int, required=True)
    parser.add_argument("--attention_type", type=str, required=True)
    parser.add_argument("--sample_neg_prompt", type=str, default="")
    parser.add_argument("--sample_guide_scale", type=float, default=5.0)
    parser.add_argument("--sample_shift", type=float, default=5.0)
    parser.add_argument('--do_mm_calib', action='store_true')
    parser.add_argument('--cpu_offload', action='store_true')
    parser.add_argument('--feature_caching', choices=["NoCaching", "TaylorSeer", "Tea"], default="NoCaching")
    parser.add_argument('--mm_config', default=None)
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--parallel_attn', action='store_true')
    parser.add_argument('--max_area', action='store_true')
    parser.add_argument('--vae_stride', default=(4, 8, 8))
    parser.add_argument('--patch_size', default=(1, 2, 2))
    parser.add_argument("--teacache_thresh", type=float, default=0.26)
    parser.add_argument("--use_ret_steps", action="store_true", default=False)
    args = parser.parse_args()

    start_time = time.time()
    print(f"args: {args}")
    
    seed_all(args.seed)

    if args.parallel_attn:
        dist.init_process_group(backend='nccl')

    if args.mm_config:
        mm_config = json.loads(args.mm_config)
    else:
        mm_config = None

    model_config = {
        "task": args.task,
        "attention_type": args.attention_type,
        "sample_neg_prompt": args.sample_neg_prompt,
        "mm_config": mm_config,
        "do_mm_calib": args.do_mm_calib,
        "cpu_offload": args.cpu_offload,
        "feature_caching": args.feature_caching,
        "parallel_attn": args.parallel_attn
    }

    if args.config_path is not None:
        with open(args.config_path, "r") as f:
            config = json.load(f)
        model_config.update(config)

    print(f"model_config: {model_config}")

    model, text_encoders, vae_model, image_encoder = load_models(args, model_config)

    if args.task in ['i2v']:
        image_encoder_output = run_image_encoder(args, image_encoder, vae_model)
    else:
        image_encoder_output = {"clip_encoder_out": None, "vae_encode_out": None}

    text_encoder_output = run_text_encoder(args, args.prompt, text_encoders, model_config)

    set_target_shape(args)
    scheduler = init_scheduler(args)

    model.set_scheduler(scheduler)

    gc.collect()
    torch.cuda.empty_cache()

    if args.cpu_offload:
        model.to_cuda()

    latents, generator = run_main_inference(args, model, text_encoder_output, image_encoder_output)

    if args.cpu_offload:
        model.to_cpu()
        gc.collect()
        torch.cuda.empty_cache()

    images = run_vae(latents, generator, args)

    if args.model_cls == "wan2.1":
        cache_video(tensor=images, save_file=args.save_video_path, fps=16, nrow=1, normalize=True, value_range=(-1, 1))
    else:
        save_videos_grid(images, args.save_video_path, fps=24)

    end_time = time.time()
    print(f"Total time: {end_time - start_time}")