quant_utils.py 6.86 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch
from qtorch.quant import float_quantize


class BaseQuantizer(object):
    def __init__(self, bit, symmetric, granularity, **kwargs):
        self.bit = bit
        self.sym = symmetric
        self.granularity = granularity
        self.kwargs = kwargs
        if self.granularity == 'per_group':
            self.group_size = self.kwargs['group_size']
        self.calib_algo = self.kwargs.get('calib_algo', 'minmax')

    def get_tensor_range(self, tensor):
        if self.calib_algo == 'minmax':
            return self.get_minmax_range(tensor)
        elif self.calib_algo == 'mse':
            return self.get_mse_range(tensor)
        else:
            raise ValueError(f'Unsupported calibration algorithm: {self.calib_algo}')

    def get_minmax_range(self, tensor):
        if self.granularity == 'per_tensor':
            max_val = torch.max(tensor)
            min_val = torch.min(tensor)
        else:
            max_val = tensor.amax(dim=-1, keepdim=True)
            min_val = tensor.amin(dim=-1, keepdim=True)
        return (min_val, max_val)

    def get_mse_range(self, tensor):
        raise NotImplementedError

    def get_qparams(self, tensor_range, device):
        min_val, max_val = tensor_range[0], tensor_range[1]
        qmin = self.qmin.to(device)
        qmax = self.qmax.to(device)
        if self.sym:
            abs_max = torch.max(max_val.abs(), min_val.abs())
            abs_max = abs_max.clamp(min=1e-5)
            scales = abs_max / qmax
            zeros = torch.tensor(0.0)
        else:
            scales = (max_val - min_val).clamp(min=1e-5) / (qmax - qmin)
            zeros = (qmin - torch.round(min_val / scales)).clamp(qmin, qmax)
        return scales, zeros, qmax, qmin

    def reshape_tensor(self, tensor, allow_padding=False):
        if self.granularity == 'per_group':
            t = tensor.reshape(-1, self.group_size)
        else:
            t = tensor
        return t

    def restore_tensor(self, tensor, shape):
        if tensor.shape == shape:
            t = tensor
        else:
            t = tensor.reshape(shape)
        return t

    def get_tensor_qparams(self, tensor):
        tensor = self.reshape_tensor(tensor)
        tensor_range = self.get_tensor_range(tensor)
        scales, zeros, qmax, qmin = self.get_qparams(tensor_range, tensor.device)
        return tensor, scales, zeros, qmax, qmin

    def fake_quant_tensor(self, tensor):
        org_shape = tensor.shape
        org_dtype = tensor.dtype
        tensor, scales, zeros, qmax, qmin = self.get_tensor_qparams(tensor)
        tensor = self.quant_dequant(tensor, scales, zeros, qmax, qmin)
        tensor = self.restore_tensor(tensor, org_shape).to(org_dtype)
        return tensor

    def real_quant_tensor(self, tensor):
        org_shape = tensor.shape
        tensor, scales, zeros, qmax, qmin = self.get_tensor_qparams(tensor)
        tensor = self.quant(tensor, scales, zeros, qmax, qmin)
        tensor = self.restore_tensor(tensor, org_shape)
        if self.sym == True:
            zeros = None
        return tensor, scales, zeros


class IntegerQuantizer(BaseQuantizer):
    def __init__(self, bit, symmetric, granularity, **kwargs):
        super().__init__(bit, symmetric, granularity, **kwargs)
        if 'int_range' in self.kwargs:
            self.qmin = self.kwargs['int_range'][0]
            self.qmax = self.kwargs['int_range'][1]
        else:
            if self.sym:
                self.qmin = -(2 ** (self.bit - 1))
                self.qmax = 2 ** (self.bit - 1) - 1
            else:
                self.qmin = 0.0
                self.qmax = 2**self.bit - 1

        self.qmin = torch.tensor(self.qmin)
        self.qmax = torch.tensor(self.qmax)
        self.dst_nbins = 2**bit

    def quant(self, tensor, scales, zeros, qmax, qmin):
        tensor = torch.clamp(torch.round(tensor / scales) + zeros, qmin, qmax)
        return tensor

    def dequant(self, tensor, scales, zeros):
        tensor = (tensor - zeros) * scales
        return tensor

    def quant_dequant(self, tensor, scales, zeros, qmax, qmin,):
        tensor = self.quant(tensor, scales, zeros, qmax, qmin)
        tensor = self.dequant(tensor, scales, zeros)
        return tensor


class FloatQuantizer(BaseQuantizer):
    def __init__(self, bit, symmetric, granularity, **kwargs):
        super().__init__(bit, symmetric, granularity, **kwargs)
        assert self.bit in ['e4m3', 'e5m2'], f'Unsupported bit configuration: {self.bit}'
        assert self.sym == True
        
        if self.bit == 'e4m3':
            self.e_bits = 4
            self.m_bits = 3
            self.fp_dtype = torch.float8_e4m3fn
        elif self.bit == 'e5m2':
            self.e_bits = 5
            self.m_bits = 2
            self.fp_dtype = torch.float8_e5m2
        else:
            raise ValueError(f'Unsupported bit configuration: {self.bit}')

        finfo = torch.finfo(self.fp_dtype)
        self.qmin, self.qmax = finfo.min, finfo.max

        self.qmax = torch.tensor(self.qmax)
        self.qmin = torch.tensor(self.qmin)

    def quant(self, tensor, scales, zeros, qmax, qmin):
        scaled_tensor = tensor / scales + zeros
        scaled_tensor = torch.clip(
                    scaled_tensor, self.qmin.cuda(), self.qmax.cuda()
                )
        org_dtype = scaled_tensor.dtype
        q_tensor = float_quantize(
            scaled_tensor.float(), self.e_bits, self.m_bits, rounding='nearest'
        )
        q_tensor.to(org_dtype)
        return q_tensor

    def dequant(self, tensor, scales, zeros):
        tensor = (tensor - zeros) * scales
        return tensor

    def quant_dequant(self, tensor, scales, zeros, qmax, qmin):
        tensor = self.quant(tensor, scales, zeros, qmax, qmin)
        tensor = self.dequant(tensor, scales, zeros)
        return tensor


if __name__ == '__main__':
    weight = torch.randn(4096, 4096, dtype=torch.bfloat16).cuda()
    quantizer = IntegerQuantizer(4, False, 'per_group', group_size=128)
    q_weight = quantizer.fake_quant_tensor(weight)
    print(weight)
    print(q_weight)
    print(f"cosine = {torch.cosine_similarity(weight.view(1, -1).to(torch.float64), q_weight.view(1, -1).to(torch.float64))}")
    
    realq_weight, scales, zeros = quantizer.real_quant_tensor(weight)
    print(f"realq_weight = {realq_weight}, {realq_weight.shape}")
    print(f"scales = {scales}, {scales.shape}")
    print(f"zeros = {zeros}, {zeros.shape}")

    weight = torch.randn(8192, 4096, dtype=torch.bfloat16).cuda()
    quantizer = FloatQuantizer('e4m3', True, 'per_channel')
    q_weight = quantizer.fake_quant_tensor(weight)
    print(weight)
    print(q_weight)
    print(f"cosine = {torch.cosine_similarity(weight.view(1, -1).to(torch.float64), q_weight.view(1, -1).to(torch.float64))}")

    realq_weight, scales, zeros = quantizer.real_quant_tensor(weight)
    print(f"realq_weight = {realq_weight}, {realq_weight.shape}")
    print(f"scales = {scales}, {scales.shape}")
    print(f"zeros = {zeros}")