ring_attn.py 6.56 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
import torch
from .template import AttnWeightTemplate
from lightx2v.utils.registry_factory import ATTN_WEIGHT_REGISTER
import torch.distributed as dist
from .utils.ring_comm import RingComm
import torch.nn.functional as F
gushiqiao's avatar
gushiqiao committed
7
from loguru import logger
helloyongyang's avatar
helloyongyang committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

try:
    import flash_attn
    from flash_attn.flash_attn_interface import flash_attn_varlen_func
except ImportError:
    logger.info("flash_attn_varlen_func not found, please install flash_attn2 first")
    flash_attn_varlen_func = None


@torch.jit.script
def _update_out_and_lse(
    out,
    lse,
    block_out,
    block_lse,
):
    block_out = block_out.to(torch.float32)
    block_lse = block_lse.transpose(-2, -1).unsqueeze(dim=-1)

    # new_lse = lse + torch.log(1 + torch.exp(block_lse - lse))
    # torch.exp(lse - new_lse) * out + torch.exp(block_lse - new_lse) * block_out
    # For additional context and discussion, please refer to:
    # https://github.com/zhuzilin/ring-flash-attention/pull/34#issuecomment-2076126795
    out = out - F.sigmoid(block_lse - lse) * (out - block_out)
    lse = lse - F.logsigmoid(lse - block_lse)
    return out, lse


@ATTN_WEIGHT_REGISTER("ring")
class RingAttnWeight(AttnWeightTemplate):
    def __init__(self):
        self.config = {}

    def apply(self, q, k, v, img_qkv_len, cu_seqlens_qkv, attention_module=None):
        """
        执行 Ring 注意力机制,结合图像和文本的查询、键和值。

        参数:
            q (torch.Tensor): 查询张量,形状为 [shard_seqlen, heads, hidden_dims]
            k (torch.Tensor): 键张量,形状为 [shard_seqlen, heads, hidden_dims]
            v (torch.Tensor): 值张量,形状为 [shard_seqlen, heads, hidden_dims]
            img_qkv_len (int): 图像查询、键和值的长度
            cu_seqlens_qkv (torch.Tensor): 累积序列长度,包含文本和图像的长度信息
            attention_type (str): 注意力类型,默认为 "flash_attn2"

        返回:
            torch.Tensor: 计算得到的注意力结果
        """
        # 获取当前进程的排名和全局进程数
        cur_rank = dist.get_rank()
        world_size = dist.get_world_size()

        if len(cu_seqlens_qkv) == 3:
            txt_qkv_len = cu_seqlens_qkv[1] - img_qkv_len  # 文本查询、键和值的长度
            txt_mask_len = cu_seqlens_qkv[2] - img_qkv_len  # 文本掩码长度
        elif len(cu_seqlens_qkv) == 2:
            txt_qkv_len = cu_seqlens_qkv[1] - img_qkv_len  # 文本查询、键和值的长度
            txt_mask_len = 0

        # if RING_COMM is None:
        #     init_ring_comm()

        RING_COMM = RingComm()

        # if len(cu_seqlens_qkv) == 3:
        #     txt_qkv_len = cu_seqlens_qkv[1] - img_qkv_len  # 文本查询、键和值的长度
        #     txt_mask_len = cu_seqlens_qkv[2] - img_qkv_len  # 文本掩码长度
        # elif len(cu_seqlens_qkv) == 2:
        #     txt_qkv_len = cu_seqlens_qkv[1] - img_qkv_len  # 文本查询、键和值的长度
        #     txt_mask_len = None
        q = q.unsqueeze(0)
        k = k.unsqueeze(0)
        v = v.unsqueeze(0)

        img_q, img_k, img_v = q[:, :img_qkv_len, :, :].contiguous(), k[:, :img_qkv_len, :, :].contiguous(), v[:, :img_qkv_len, :, :].contiguous()
        txt_q, txt_k, txt_v = (
            q[:, img_qkv_len : img_qkv_len + txt_qkv_len, :, :].contiguous(),
            k[:, img_qkv_len : img_qkv_len + txt_qkv_len, :, :].contiguous(),
            v[:, img_qkv_len : img_qkv_len + txt_qkv_len, :, :].contiguous(),
        )

        out, lse, next_k, next_v = None, None, None, None

        if len(cu_seqlens_qkv) == 3:
            q = torch.cat((img_q, txt_q), dim=1)
        k = img_k
        v = img_v

        for step in range(world_size):
            if step + 1 != world_size:
                next_k = RING_COMM.send_recv(k)
                next_v = RING_COMM.send_recv(v)
                RING_COMM.commit()

            if step + 1 == world_size:
                k = torch.cat((k, txt_k), dim=1)
                v = torch.cat((v, txt_v), dim=1)

            block_out, block_lse = self.ring_attn_sub(q, k, v)

            out, lse = self.update_out_and_lse(out, lse, block_out, block_lse)

            if step + 1 != world_size:
                RING_COMM.wait()
                k = next_k
                v = next_v

        attn1 = out.to(torch.bfloat16).squeeze(0).reshape(img_qkv_len + txt_qkv_len, -1)

        if txt_mask_len > 0:
            attn2, *_ = flash_attn.flash_attn_interface._flash_attn_forward(
                q[:, -(txt_mask_len - txt_qkv_len) :, :, :].contiguous(),
                k[:, -(txt_mask_len - txt_qkv_len) :, :, :].contiguous(),
                v[:, -(txt_mask_len - txt_qkv_len) :, :, :].contiguous(),
                dropout_p=0.0,
                softmax_scale=q.shape[-1] ** (-0.5),
                causal=False,
                window_size_left=-1,
                window_size_right=-1,
                softcap=0.0,
                alibi_slopes=None,
                return_softmax=False,
            )

            attn2 = attn2.to(torch.bfloat16).squeeze(0).reshape((txt_mask_len - txt_qkv_len), -1)
            attn1 = torch.cat([attn1, attn2], dim=0)

        return attn1

    def ring_attn_sub(self, q, k, v, dropout_p=0.0, softmax_scale=None, causal=False, window_size=(-1, -1), softcap=0.0, alibi_slopes=None, return_softmax=False):
        if softmax_scale is None:
            softmax_scale = q.shape[-1] ** (-0.5)
        block_out, block_lse, _, _ = flash_attn.flash_attn_interface._flash_attn_forward(
            q,
            k,
            v,
            dropout_p=dropout_p,
            softmax_scale=softmax_scale,
            causal=causal,
            window_size_left=window_size[0],
            window_size_right=window_size[1],
            softcap=softcap,
            alibi_slopes=alibi_slopes,
            return_softmax=return_softmax,
        )
        return block_out, block_lse

    def update_out_and_lse(
        self,
        out,
        lse,
        block_out,
        block_lse,
        slice_=None,
    ):
        if out is None:
            if slice_ is not None:
                raise RuntimeError("first update_out_and_lse should not pass slice_ args")
            out = block_out.to(torch.float32)
            lse = block_lse.transpose(-2, -1).unsqueeze(dim=-1)
        elif slice_ is not None:
            slice_out, slice_lse = out[slice_], lse[slice_]
            slice_out, slice_lse = _update_out_and_lse(slice_out, slice_lse, block_out, block_lse)
            out[slice_], lse[slice_] = slice_out, slice_lse
        else:
            out, lse = _update_out_and_lse(out, lse, block_out, block_lse)
        return out, lse