vae.py 34.6 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.

import torch
PengGao's avatar
PengGao committed
4
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
5
6
7
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
root's avatar
root committed
8
from loguru import logger
helloyongyang's avatar
helloyongyang committed
9

10
11
from lightx2v.models.video_encoders.hf.wan.dist.distributed_env import DistributedEnv
from lightx2v.models.video_encoders.hf.wan.dist.split_gather import gather_forward_split_backward, split_forward_gather_backward
gushiqiao's avatar
gushiqiao committed
12
from lightx2v.utils.utils import load_weights
13

helloyongyang's avatar
helloyongyang committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
__all__ = [
    "WanVAE",
]

CACHE_T = 2


class CausalConv3d(nn.Conv3d):
    """
    Causal 3d convolusion.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._padding = (
            self.padding[2],
            self.padding[2],
            self.padding[1],
            self.padding[1],
            2 * self.padding[0],
            0,
        )
        self.padding = (0, 0, 0)

    def forward(self, x, cache_x=None):
        padding = list(self._padding)
        if cache_x is not None and self._padding[4] > 0:
            cache_x = cache_x.to(x.device)
            x = torch.cat([cache_x, x], dim=2)
            padding[4] -= cache_x.shape[2]
        x = F.pad(x, padding)

        return super().forward(x)


class RMS_norm(nn.Module):
    def __init__(self, dim, channel_first=True, images=True, bias=False):
        super().__init__()
        broadcastable_dims = (1, 1, 1) if not images else (1, 1)
        shape = (dim, *broadcastable_dims) if channel_first else (dim,)

        self.channel_first = channel_first
        self.scale = dim**0.5
        self.gamma = nn.Parameter(torch.ones(shape))
        self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0

    def forward(self, x):
Dongz's avatar
Dongz committed
61
        return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias
helloyongyang's avatar
helloyongyang committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98


class Upsample(nn.Upsample):
    def forward(self, x):
        """
        Fix bfloat16 support for nearest neighbor interpolation.
        """
        return super().forward(x.float()).type_as(x)


class Resample(nn.Module):
    def __init__(self, dim, mode):
        assert mode in (
            "none",
            "upsample2d",
            "upsample3d",
            "downsample2d",
            "downsample3d",
        )
        super().__init__()
        self.dim = dim
        self.mode = mode

        # layers
        if mode == "upsample2d":
            self.resample = nn.Sequential(
                Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
                nn.Conv2d(dim, dim // 2, 3, padding=1),
            )
        elif mode == "upsample3d":
            self.resample = nn.Sequential(
                Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
                nn.Conv2d(dim, dim // 2, 3, padding=1),
            )
            self.time_conv = CausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))

        elif mode == "downsample2d":
Dongz's avatar
Dongz committed
99
            self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
helloyongyang's avatar
helloyongyang committed
100
        elif mode == "downsample3d":
Dongz's avatar
Dongz committed
101
102
            self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
            self.time_conv = CausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
helloyongyang's avatar
helloyongyang committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116

        else:
            self.resample = nn.Identity()

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        b, c, t, h, w = x.size()
        if self.mode == "upsample3d":
            if feat_cache is not None:
                idx = feat_idx[0]
                if feat_cache[idx] is None:
                    feat_cache[idx] = "Rep"
                    feat_idx[0] += 1
                else:
                    cache_x = x[:, :, -CACHE_T:, :, :].clone()
Dongz's avatar
Dongz committed
117
                    if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep":
helloyongyang's avatar
helloyongyang committed
118
119
120
                        # cache last frame of last two chunk
                        cache_x = torch.cat(
                            [
Dongz's avatar
Dongz committed
121
                                feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
helloyongyang's avatar
helloyongyang committed
122
123
124
125
                                cache_x,
                            ],
                            dim=2,
                        )
Dongz's avatar
Dongz committed
126
                    if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep":
helloyongyang's avatar
helloyongyang committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
                        cache_x = torch.cat(
                            [torch.zeros_like(cache_x).to(cache_x.device), cache_x],
                            dim=2,
                        )
                    if feat_cache[idx] == "Rep":
                        x = self.time_conv(x)
                    else:
                        x = self.time_conv(x, feat_cache[idx])
                    feat_cache[idx] = cache_x
                    feat_idx[0] += 1

                    x = x.reshape(b, 2, c, t, h, w)
                    x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
                    x = x.reshape(b, c, t * 2, h, w)
        t = x.shape[2]
        x = rearrange(x, "b c t h w -> (b t) c h w")
        x = self.resample(x)
        x = rearrange(x, "(b t) c h w -> b c t h w", t=t)

        if self.mode == "downsample3d":
            if feat_cache is not None:
                idx = feat_idx[0]
                if feat_cache[idx] is None:
                    feat_cache[idx] = x.clone()
                    feat_idx[0] += 1
                else:
                    cache_x = x[:, :, -1:, :, :].clone()
                    # if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx]!='Rep':
                    #     # cache last frame of last two chunk
                    #     cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)

Dongz's avatar
Dongz committed
158
                    x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
helloyongyang's avatar
helloyongyang committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
                    feat_cache[idx] = cache_x
                    feat_idx[0] += 1
        return x

    def init_weight(self, conv):
        conv_weight = conv.weight
        nn.init.zeros_(conv_weight)
        c1, c2, t, h, w = conv_weight.size()
        one_matrix = torch.eye(c1, c2)
        init_matrix = one_matrix
        nn.init.zeros_(conv_weight)
        # conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
        conv_weight.data[:, :, 1, 0, 0] = init_matrix  # * 0.5
        conv.weight.data.copy_(conv_weight)
        nn.init.zeros_(conv.bias.data)

    def init_weight2(self, conv):
        conv_weight = conv.weight.data
        nn.init.zeros_(conv_weight)
        c1, c2, t, h, w = conv_weight.size()
        init_matrix = torch.eye(c1 // 2, c2)
        # init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
        conv_weight[: c1 // 2, :, -1, 0, 0] = init_matrix
        conv_weight[c1 // 2 :, :, -1, 0, 0] = init_matrix
        conv.weight.data.copy_(conv_weight)
        nn.init.zeros_(conv.bias.data)


class ResidualBlock(nn.Module):
    def __init__(self, in_dim, out_dim, dropout=0.0):
        super().__init__()
        self.in_dim = in_dim
        self.out_dim = out_dim

        # layers
        self.residual = nn.Sequential(
            RMS_norm(in_dim, images=False),
            nn.SiLU(),
            CausalConv3d(in_dim, out_dim, 3, padding=1),
            RMS_norm(out_dim, images=False),
            nn.SiLU(),
            nn.Dropout(dropout),
            CausalConv3d(out_dim, out_dim, 3, padding=1),
        )
Dongz's avatar
Dongz committed
203
        self.shortcut = CausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()
helloyongyang's avatar
helloyongyang committed
204
205
206
207
208
209
210
211
212
213
214

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        h = self.shortcut(x)
        for layer in self.residual:
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
                idx = feat_idx[0]
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                    # cache last frame of last two chunk
                    cache_x = torch.cat(
                        [
Dongz's avatar
Dongz committed
215
                            feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
helloyongyang's avatar
helloyongyang committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
                            cache_x,
                        ],
                        dim=2,
                    )
                x = layer(x, feat_cache[idx])
                feat_cache[idx] = cache_x
                feat_idx[0] += 1
            else:
                x = layer(x)
        return x + h


class AttentionBlock(nn.Module):
    """
    Causal self-attention with a single head.
    """

    def __init__(self, dim):
        super().__init__()
        self.dim = dim

        # layers
        self.norm = RMS_norm(dim)
        self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
        self.proj = nn.Conv2d(dim, dim, 1)

        # zero out the last layer params
        nn.init.zeros_(self.proj.weight)

    def forward(self, x):
        identity = x
        b, c, t, h, w = x.size()
        x = rearrange(x, "b c t h w -> (b t) c h w")
        x = self.norm(x)
        # compute query, key, value
Dongz's avatar
Dongz committed
251
        q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3, -1).permute(0, 1, 3, 2).contiguous().chunk(3, dim=-1)
helloyongyang's avatar
helloyongyang committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

        # apply attention
        x = F.scaled_dot_product_attention(
            q,
            k,
            v,
        )
        x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)

        # output
        x = self.proj(x)
        x = rearrange(x, "(b t) c h w-> b c t h w", t=t)
        return x + identity


class Encoder3d(nn.Module):
    def __init__(
        self,
        dim=128,
        z_dim=4,
        dim_mult=[1, 2, 4, 4],
        num_res_blocks=2,
        attn_scales=[],
        temperal_downsample=[True, True, False],
        dropout=0.0,
    ):
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_downsample = temperal_downsample

        # dimensions
        dims = [dim * u for u in [1] + dim_mult]
        scale = 1.0

        # init block
        self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)

        # downsample blocks
        downsamples = []
        for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
            # residual (+attention) blocks
            for _ in range(num_res_blocks):
                downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
                if scale in attn_scales:
                    downsamples.append(AttentionBlock(out_dim))
                in_dim = out_dim

            # downsample block
            if i != len(dim_mult) - 1:
                mode = "downsample3d" if temperal_downsample[i] else "downsample2d"
                downsamples.append(Resample(out_dim, mode=mode))
                scale /= 2.0
        self.downsamples = nn.Sequential(*downsamples)

        # middle blocks
        self.middle = nn.Sequential(
            ResidualBlock(out_dim, out_dim, dropout),
            AttentionBlock(out_dim),
            ResidualBlock(out_dim, out_dim, dropout),
        )

        # output blocks
        self.head = nn.Sequential(
            RMS_norm(out_dim, images=False),
            nn.SiLU(),
            CausalConv3d(out_dim, z_dim, 3, padding=1),
        )

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        if feat_cache is not None:
            idx = feat_idx[0]
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                # cache last frame of last two chunk
                cache_x = torch.cat(
                    [
                        feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
                        cache_x,
                    ],
                    dim=2,
                )
            x = self.conv1(x, feat_cache[idx])
            feat_cache[idx] = cache_x
            feat_idx[0] += 1
        else:
            x = self.conv1(x)

        ## downsamples
        for layer in self.downsamples:
            if feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## middle
        for layer in self.middle:
            if isinstance(layer, ResidualBlock) and feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## head
        for layer in self.head:
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
                idx = feat_idx[0]
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                    # cache last frame of last two chunk
                    cache_x = torch.cat(
                        [
Dongz's avatar
Dongz committed
366
                            feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
helloyongyang's avatar
helloyongyang committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
                            cache_x,
                        ],
                        dim=2,
                    )
                x = layer(x, feat_cache[idx])
                feat_cache[idx] = cache_x
                feat_idx[0] += 1
            else:
                x = layer(x)
        return x


class Decoder3d(nn.Module):
    def __init__(
        self,
        dim=128,
        z_dim=4,
        dim_mult=[1, 2, 4, 4],
        num_res_blocks=2,
        attn_scales=[],
        temperal_upsample=[False, True, True],
        dropout=0.0,
    ):
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_upsample = temperal_upsample

        # dimensions
        dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
        scale = 1.0 / 2 ** (len(dim_mult) - 2)

        # init block
        self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)

        # middle blocks
        self.middle = nn.Sequential(
            ResidualBlock(dims[0], dims[0], dropout),
            AttentionBlock(dims[0]),
            ResidualBlock(dims[0], dims[0], dropout),
        )

        # upsample blocks
        upsamples = []
        for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
            # residual (+attention) blocks
            if i == 1 or i == 2 or i == 3:
                in_dim = in_dim // 2
            for _ in range(num_res_blocks + 1):
                upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
                if scale in attn_scales:
                    upsamples.append(AttentionBlock(out_dim))
                in_dim = out_dim

            # upsample block
            if i != len(dim_mult) - 1:
                mode = "upsample3d" if temperal_upsample[i] else "upsample2d"
                upsamples.append(Resample(out_dim, mode=mode))
                scale *= 2.0
        self.upsamples = nn.Sequential(*upsamples)

        # output blocks
        self.head = nn.Sequential(
            RMS_norm(out_dim, images=False),
            nn.SiLU(),
            CausalConv3d(out_dim, 3, 3, padding=1),
        )

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        ## conv1
        if feat_cache is not None:
            idx = feat_idx[0]
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                # cache last frame of last two chunk
                cache_x = torch.cat(
                    [
                        feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
                        cache_x,
                    ],
                    dim=2,
                )
            x = self.conv1(x, feat_cache[idx])
            feat_cache[idx] = cache_x
            feat_idx[0] += 1
        else:
            x = self.conv1(x)

        ## middle
        for layer in self.middle:
            if isinstance(layer, ResidualBlock) and feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## upsamples
        for layer in self.upsamples:
            if feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## head
        for layer in self.head:
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
                idx = feat_idx[0]
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                    # cache last frame of last two chunk
                    cache_x = torch.cat(
                        [
Dongz's avatar
Dongz committed
481
                            feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
helloyongyang's avatar
helloyongyang committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
                            cache_x,
                        ],
                        dim=2,
                    )
                x = layer(x, feat_cache[idx])
                feat_cache[idx] = cache_x
                feat_idx[0] += 1
            else:
                x = layer(x)
        return x


def count_conv3d(model):
    count = 0
    for m in model.modules():
        if isinstance(m, CausalConv3d):
            count += 1
    return count


class WanVAE_(nn.Module):
    def __init__(
        self,
        dim=128,
        z_dim=4,
        dim_mult=[1, 2, 4, 4],
        num_res_blocks=2,
        attn_scales=[],
        temperal_downsample=[True, True, False],
        dropout=0.0,
    ):
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_downsample = temperal_downsample
        self.temperal_upsample = temperal_downsample[::-1]
521
        self.spatial_compression_ratio = 2 ** len(self.temperal_downsample)
522
        self.use_approximate_patch = False
helloyongyang's avatar
helloyongyang committed
523

524
525
526
527
528
529
530
        # The minimal tile height and width for spatial tiling to be used
        self.tile_sample_min_height = 256
        self.tile_sample_min_width = 256

        # The minimal distance between two spatial tiles
        self.tile_sample_stride_height = 192
        self.tile_sample_stride_width = 192
helloyongyang's avatar
helloyongyang committed
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
        # modules
        self.encoder = Encoder3d(
            dim,
            z_dim * 2,
            dim_mult,
            num_res_blocks,
            attn_scales,
            self.temperal_downsample,
            dropout,
        )
        self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
        self.conv2 = CausalConv3d(z_dim, z_dim, 1)
        self.decoder = Decoder3d(
            dim,
            z_dim,
            dim_mult,
            num_res_blocks,
            attn_scales,
            self.temperal_upsample,
            dropout,
        )

553
554
555
556
557
558
    def enable_approximate_patch(self):
        self.use_approximate_patch = True

    def disable_approximate_patch(self):
        self.use_approximate_patch = False

helloyongyang's avatar
helloyongyang committed
559
560
561
562
563
564
    def forward(self, x):
        mu, log_var = self.encode(x)
        z = self.reparameterize(mu, log_var)
        x_recon = self.decode(z)
        return x_recon, mu, log_var

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
    def blend_v(self, a, b, blend_extent):
        blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
        for y in range(blend_extent):
            b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent)
        return b

    def blend_h(self, a, b, blend_extent):
        blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
        for x in range(blend_extent):
            b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent)
        return b

    def tiled_encode(self, x, scale):
        _, _, num_frames, height, width = x.shape
        latent_height = height // self.spatial_compression_ratio
        latent_width = width // self.spatial_compression_ratio

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
        tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        blend_height = tile_latent_min_height - tile_latent_stride_height
        blend_width = tile_latent_min_width - tile_latent_stride_width

        # Split x into overlapping tiles and encode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, self.tile_sample_stride_height):
            row = []
            for j in range(0, width, self.tile_sample_stride_width):
                self.clear_cache()
                time = []
                frame_range = 1 + (num_frames - 1) // 4
                for k in range(frame_range):
                    self._enc_conv_idx = [0]
                    if k == 0:
                        tile = x[:, :, :1, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
                    else:
                        tile = x[
                            :,
                            :,
                            1 + 4 * (k - 1) : 1 + 4 * k,
                            i : i + self.tile_sample_min_height,
                            j : j + self.tile_sample_min_width,
                        ]
                    tile = self.encoder(tile, feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
                    mu, log_var = self.conv1(tile).chunk(2, dim=1)
                    if isinstance(scale[0], torch.Tensor):
                        mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1)
                    else:
                        mu = (mu - scale[0]) * scale[1]

                    time.append(mu)

                row.append(torch.cat(time, dim=2))
            rows.append(row)
        self.clear_cache()

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
            result_rows.append(torch.cat(result_row, dim=-1))

        enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
        return enc

    def tiled_decode(self, z, scale):
641
642
643
        if self.use_approximate_patch:
            z = split_forward_gather_backward(None, z, 3)

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
        if isinstance(scale[0], torch.Tensor):
            z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(1, self.z_dim, 1, 1, 1)
        else:
            z = z / scale[1] + scale[0]

        _, _, num_frames, height, width = z.shape
        sample_height = height * self.spatial_compression_ratio
        sample_width = width * self.spatial_compression_ratio

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
        tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
        blend_width = self.tile_sample_min_width - self.tile_sample_stride_width

        # Split z into overlapping tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, tile_latent_stride_height):
            row = []
            for j in range(0, width, tile_latent_stride_width):
                self.clear_cache()
                time = []
                for k in range(num_frames):
                    self._conv_idx = [0]
                    tile = z[:, :, k : k + 1, i : i + tile_latent_min_height, j : j + tile_latent_min_width]
                    tile = self.conv2(tile)
                    decoded = self.decoder(tile, feat_cache=self._feat_map, feat_idx=self._conv_idx)
                    time.append(decoded)
                row.append(torch.cat(time, dim=2))
            rows.append(row)
        self.clear_cache()

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
            result_rows.append(torch.cat(result_row, dim=-1))

        dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
693
694
        if self.use_approximate_patch:
            dec = gather_forward_split_backward(None, dec, 3)
695
696
697

        return dec

helloyongyang's avatar
helloyongyang committed
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
    def encode(self, x, scale):
        self.clear_cache()
        ## cache
        t = x.shape[2]
        iter_ = 1 + (t - 1) // 4
        for i in range(iter_):
            self._enc_conv_idx = [0]
            if i == 0:
                out = self.encoder(
                    x[:, :, :1, :, :],
                    feat_cache=self._enc_feat_map,
                    feat_idx=self._enc_conv_idx,
                )
            else:
                out_ = self.encoder(
                    x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :],
                    feat_cache=self._enc_feat_map,
                    feat_idx=self._enc_conv_idx,
                )
                out = torch.cat([out, out_], 2)
        mu, log_var = self.conv1(out).chunk(2, dim=1)
        if isinstance(scale[0], torch.Tensor):
Dongz's avatar
Dongz committed
720
            mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1)
helloyongyang's avatar
helloyongyang committed
721
722
        else:
            mu = (mu - scale[0]) * scale[1]
723

helloyongyang's avatar
helloyongyang committed
724
725
726
727
728
        self.clear_cache()
        return mu

    def decode(self, z, scale):
        self.clear_cache()
729
730
731
        if self.use_approximate_patch:
            z = split_forward_gather_backward(None, z, 3)

helloyongyang's avatar
helloyongyang committed
732
733
        # z: [b,c,t,h,w]
        if isinstance(scale[0], torch.Tensor):
Dongz's avatar
Dongz committed
734
            z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(1, self.z_dim, 1, 1, 1)
helloyongyang's avatar
helloyongyang committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
        else:
            z = z / scale[1] + scale[0]
        iter_ = z.shape[2]
        x = self.conv2(z)
        for i in range(iter_):
            self._conv_idx = [0]
            if i == 0:
                out = self.decoder(
                    x[:, :, i : i + 1, :, :],
                    feat_cache=self._feat_map,
                    feat_idx=self._conv_idx,
                )
            else:
                out_ = self.decoder(
                    x[:, :, i : i + 1, :, :],
                    feat_cache=self._feat_map,
                    feat_idx=self._conv_idx,
                )
                out = torch.cat([out, out_], 2)
754
755
756
757

        if self.use_approximate_patch:
            out = gather_forward_split_backward(None, out, 3)

helloyongyang's avatar
helloyongyang committed
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
        self.clear_cache()
        return out

    def reparameterize(self, mu, log_var):
        std = torch.exp(0.5 * log_var)
        eps = torch.randn_like(std)
        return eps * std + mu

    def sample(self, imgs, deterministic=False):
        mu, log_var = self.encode(imgs)
        if deterministic:
            return mu
        std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
        return mu + std * torch.randn_like(std)

    def clear_cache(self):
        self._conv_num = count_conv3d(self.decoder)
        self._conv_idx = [0]
        self._feat_map = [None] * self._conv_num
        # cache encode
        self._enc_conv_num = count_conv3d(self.encoder)
        self._enc_conv_idx = [0]
        self._enc_feat_map = [None] * self._enc_conv_num


helloyongyang's avatar
helloyongyang committed
783
def _video_vae(pretrained_path=None, z_dim=None, device="cpu", cpu_offload=False, **kwargs):
helloyongyang's avatar
helloyongyang committed
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
    """
    Autoencoder3d adapted from Stable Diffusion 1.x, 2.x and XL.
    """
    # params
    cfg = dict(
        dim=96,
        z_dim=z_dim,
        dim_mult=[1, 2, 4, 4],
        num_res_blocks=2,
        attn_scales=[],
        temperal_downsample=[False, True, True],
        dropout=0.0,
    )
    cfg.update(**kwargs)

    # init model
    with torch.device("meta"):
        model = WanVAE_(**cfg)

    # load checkpoint
gushiqiao's avatar
gushiqiao committed
804
    weights_dict = load_weights(pretrained_path, cpu_offload=cpu_offload)
805
    model.load_state_dict(weights_dict, assign=True)
helloyongyang's avatar
helloyongyang committed
806
807
808
809
810
811
812
813
814
815
816

    return model


class WanVAE:
    def __init__(
        self,
        z_dim=16,
        vae_pth="cache/vae_step_411000.pth",
        dtype=torch.float,
        device="cuda",
Xinchi Huang's avatar
Xinchi Huang committed
817
        parallel=False,
818
        use_tiling=False,
819
        cpu_offload=False,
helloyongyang's avatar
helloyongyang committed
820
821
822
    ):
        self.dtype = dtype
        self.device = device
Xinchi Huang's avatar
Xinchi Huang committed
823
        self.parallel = parallel
824
        self.use_tiling = use_tiling
825
        self.cpu_offload = cpu_offload
helloyongyang's avatar
helloyongyang committed
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

        mean = [
            -0.7571,
            -0.7089,
            -0.9113,
            0.1075,
            -0.1745,
            0.9653,
            -0.1517,
            1.5508,
            0.4134,
            -0.0715,
            0.5517,
            -0.3632,
            -0.1922,
            -0.9497,
            0.2503,
            -0.2921,
        ]
        std = [
            2.8184,
            1.4541,
            2.3275,
            2.6558,
            1.2196,
            1.7708,
            2.6052,
            2.0743,
            3.2687,
            2.1526,
            2.8652,
            1.5579,
            1.6382,
            1.1253,
            2.8251,
            1.9160,
        ]
        self.mean = torch.tensor(mean, dtype=dtype, device=device)
TorynCurtis's avatar
TorynCurtis committed
864
865
        self.inv_std = 1.0 / torch.tensor(std, dtype=dtype, device=device)
        self.scale = [self.mean, self.inv_std]
helloyongyang's avatar
helloyongyang committed
866
867

        # init model
helloyongyang's avatar
helloyongyang committed
868
        self.model = _video_vae(pretrained_path=vae_pth, z_dim=z_dim, cpu_offload=cpu_offload).eval().requires_grad_(False).to(device)
869
870
871
872
873
874
        self.use_approximate_patch = False
        if self.parallel and self.parallel.get("use_patch_vae", False):
            # assert not self.use_tiling
            DistributedEnv.initialize(None)
            self.use_approximate_patch = True
            self.model.enable_approximate_patch()
helloyongyang's avatar
helloyongyang committed
875

wangshankun's avatar
wangshankun committed
876
877
878
    def current_device(self):
        return next(self.model.parameters()).device

TorynCurtis's avatar
TorynCurtis committed
879
    def to_cpu(self):
wangshankun's avatar
wangshankun committed
880
881
        self.model.encoder = self.model.encoder.to("cpu")
        self.model.decoder = self.model.decoder.to("cpu")
TorynCurtis's avatar
TorynCurtis committed
882
883
884
885
886
887
        self.model = self.model.to("cpu")
        self.mean = self.mean.cpu()
        self.inv_std = self.inv_std.cpu()
        self.scale = [self.mean, self.inv_std]

    def to_cuda(self):
wangshankun's avatar
wangshankun committed
888
889
        self.model.encoder = self.model.encoder.to("cuda")
        self.model.decoder = self.model.decoder.to("cuda")
TorynCurtis's avatar
TorynCurtis committed
890
891
892
893
894
        self.model = self.model.to("cuda")
        self.mean = self.mean.cuda()
        self.inv_std = self.inv_std.cuda()
        self.scale = [self.mean, self.inv_std]

895
    def encode(self, videos):
helloyongyang's avatar
helloyongyang committed
896
897
898
        """
        videos: A list of videos each with shape [C, T, H, W].
        """
899
        if self.cpu_offload:
gushiqiao's avatar
gushiqiao committed
900
901
            self.to_cuda()

902
        if self.use_tiling:
wangshankun's avatar
wangshankun committed
903
            out = [self.model.tiled_encode(u.unsqueeze(0).to(self.current_device()), self.scale).float().squeeze(0) for u in videos]
904
        else:
wangshankun's avatar
wangshankun committed
905
            out = [self.model.encode(u.unsqueeze(0).to(self.current_device()), self.scale).float().squeeze(0) for u in videos]
gushiqiao's avatar
gushiqiao committed
906

907
        if self.cpu_offload:
gushiqiao's avatar
gushiqiao committed
908
909
            self.to_cpu()
        return out
Dongz's avatar
Dongz committed
910

Xinchi Huang's avatar
Xinchi Huang committed
911
912
913
914
915
916
917
    def decode_dist(self, zs, world_size, cur_rank, split_dim):
        splited_total_len = zs.shape[split_dim]
        splited_chunk_len = splited_total_len // world_size
        padding_size = 1

        if cur_rank == 0:
            if split_dim == 2:
Dongz's avatar
Dongz committed
918
                zs = zs[:, :, : splited_chunk_len + 2 * padding_size, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
919
            elif split_dim == 3:
Dongz's avatar
Dongz committed
920
921
                zs = zs[:, :, :, : splited_chunk_len + 2 * padding_size].contiguous()
        elif cur_rank == world_size - 1:
Xinchi Huang's avatar
Xinchi Huang committed
922
            if split_dim == 2:
Dongz's avatar
Dongz committed
923
                zs = zs[:, :, -(splited_chunk_len + 2 * padding_size) :, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
924
            elif split_dim == 3:
Dongz's avatar
Dongz committed
925
                zs = zs[:, :, :, -(splited_chunk_len + 2 * padding_size) :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
926
927
        else:
            if split_dim == 2:
Dongz's avatar
Dongz committed
928
                zs = zs[:, :, cur_rank * splited_chunk_len - padding_size : (cur_rank + 1) * splited_chunk_len + padding_size, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
929
            elif split_dim == 3:
Dongz's avatar
Dongz committed
930
                zs = zs[:, :, :, cur_rank * splited_chunk_len - padding_size : (cur_rank + 1) * splited_chunk_len + padding_size].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
931

932
933
        decode_func = self.model.tiled_decode if self.use_tiling else self.model.decode
        images = decode_func(zs.unsqueeze(0), self.scale).float().clamp_(-1, 1)
Xinchi Huang's avatar
Xinchi Huang committed
934
935
936

        if cur_rank == 0:
            if split_dim == 2:
Dongz's avatar
Dongz committed
937
                images = images[:, :, :, : splited_chunk_len * 8, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
938
            elif split_dim == 3:
Dongz's avatar
Dongz committed
939
940
                images = images[:, :, :, :, : splited_chunk_len * 8].contiguous()
        elif cur_rank == world_size - 1:
Xinchi Huang's avatar
Xinchi Huang committed
941
            if split_dim == 2:
Dongz's avatar
Dongz committed
942
                images = images[:, :, :, -splited_chunk_len * 8 :, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
943
            elif split_dim == 3:
Dongz's avatar
Dongz committed
944
                images = images[:, :, :, :, -splited_chunk_len * 8 :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
945
946
        else:
            if split_dim == 2:
Dongz's avatar
Dongz committed
947
                images = images[:, :, :, 8 * padding_size : -8 * padding_size, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
948
            elif split_dim == 3:
Dongz's avatar
Dongz committed
949
                images = images[:, :, :, :, 8 * padding_size : -8 * padding_size].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
950
951
952
953
954
955

        full_images = [torch.empty_like(images) for _ in range(world_size)]
        dist.all_gather(full_images, images)

        torch.cuda.synchronize()

956
        images = torch.cat(full_images, dim=split_dim + 1)
Xinchi Huang's avatar
Xinchi Huang committed
957
958

        return images
helloyongyang's avatar
helloyongyang committed
959

960
961
    def decode(self, zs, **args):
        if self.cpu_offload:
TorynCurtis's avatar
TorynCurtis committed
962
963
            self.to_cuda()

964
        if self.parallel and not self.use_approximate_patch:
Xinchi Huang's avatar
Xinchi Huang committed
965
966
967
            world_size = dist.get_world_size()
            cur_rank = dist.get_rank()
            height, width = zs.shape[2], zs.shape[3]
968

Xinchi Huang's avatar
Xinchi Huang committed
969
            if width % world_size == 0:
970
                images = self.decode_dist(zs, world_size, cur_rank, split_dim=3)
Xinchi Huang's avatar
Xinchi Huang committed
971
            elif height % world_size == 0:
972
                images = self.decode_dist(zs, world_size, cur_rank, split_dim=2)
Xinchi Huang's avatar
Xinchi Huang committed
973
            else:
root's avatar
root committed
974
                logger.info("Fall back to naive decode mode")
Xinchi Huang's avatar
Xinchi Huang committed
975
976
                images = self.model.decode(zs.unsqueeze(0), self.scale).float().clamp_(-1, 1)
        else:
977
978
            decode_func = self.model.tiled_decode if self.use_tiling else self.model.decode
            images = decode_func(zs.unsqueeze(0), self.scale).float().clamp_(-1, 1)
TorynCurtis's avatar
TorynCurtis committed
979

980
        if self.cpu_offload:
TorynCurtis's avatar
TorynCurtis committed
981
982
983
            images = images.cpu().float()
            self.to_cpu()

Xinchi Huang's avatar
Xinchi Huang committed
984
        return images