scheduler.py 5.6 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
import gc
sandy's avatar
sandy committed
2
import math
wangshankun's avatar
wangshankun committed
3

PengGao's avatar
PengGao committed
4
5
import numpy as np
import torch
helloyongyang's avatar
helloyongyang committed
6
from loguru import logger
PengGao's avatar
PengGao committed
7

helloyongyang's avatar
helloyongyang committed
8
from lightx2v.models.schedulers.wan.scheduler import WanScheduler
PengGao's avatar
PengGao committed
9
from lightx2v.utils.envs import *
sandy's avatar
sandy committed
10
from lightx2v.utils.utils import masks_like
wangshankun's avatar
wangshankun committed
11
12


13
class EulerScheduler(WanScheduler):
helloyongyang's avatar
helloyongyang committed
14
15
    def __init__(self, config):
        super().__init__(config)
wangshankun's avatar
wangshankun committed
16

sandy's avatar
sandy committed
17
18
19
20
21
22
23
24
25
        if self.config.parallel:
            self.sp_size = self.config.parallel.get("seq_p_size", 1)
        else:
            self.sp_size = 1

        if self.config["model_cls"] == "wan2.2_audio":
            self.prev_latents = None
            self.prev_len = 0

26
27
28
    def set_audio_adapter(self, audio_adapter):
        self.audio_adapter = audio_adapter

wangshankun's avatar
wangshankun committed
29
    def step_pre(self, step_index):
30
        super().step_pre(step_index)
31
32
        if self.audio_adapter.cpu_offload:
            self.audio_adapter.time_embedding.to("cuda")
33
        self.audio_adapter_t_emb = self.audio_adapter.time_embedding(self.timestep_input).unflatten(1, (3, -1))
34
35
        if self.audio_adapter.cpu_offload:
            self.audio_adapter.time_embedding.to("cpu")
wangshankun's avatar
wangshankun committed
36

sandy's avatar
sandy committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
        if self.config.model_cls == "wan2.2_audio":
            _, lat_f, lat_h, lat_w = self.latents.shape
            F = (lat_f - 1) * self.config.vae_stride[0] + 1
            per_latent_token_len = lat_h * lat_w // (self.config.patch_size[1] * self.config.patch_size[2])
            max_seq_len = ((F - 1) // self.config.vae_stride[0] + 1) * per_latent_token_len
            max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size

            temp_ts = (self.mask[0][:, ::2, ::2] * self.timestep_input).flatten()
            self.timestep_input = torch.cat([temp_ts, temp_ts.new_ones(max_seq_len - temp_ts.size(0)) * self.timestep_input]).unsqueeze(0)

            self.timestep_input = torch.cat(
                [
                    self.timestep_input,
                    torch.zeros(
                        (1, per_latent_token_len),  # padding for reference frame latent
                        dtype=self.timestep_input.dtype,
                        device=self.timestep_input.device,
                    ),
                ],
                dim=1,
            )

    def prepare_latents(self, target_shape, dtype=torch.float32):
        self.generator = torch.Generator(device=self.device).manual_seed(self.config.seed)
        self.latents = torch.randn(
            target_shape[0],
            target_shape[1],
            target_shape[2],
            target_shape[3],
            dtype=dtype,
            device=self.device,
            generator=self.generator,
        )
        if self.config["model_cls"] == "wan2.2_audio":
            self.mask = masks_like(self.latents, zero=True, prev_len=self.prev_len)
            if self.prev_latents is not None:
                self.latents = (1.0 - self.mask) * self.prev_latents + self.mask * self.latents

    def prepare(self, previmg_encoder_output=None):
wangshankun's avatar
wangshankun committed
76
        self.prepare_latents(self.config.target_shape, dtype=torch.float32)
wangshankun's avatar
wangshankun committed
77
        timesteps = np.linspace(self.num_train_timesteps, 0, self.infer_steps + 1, dtype=np.float32)
wangshankun's avatar
wangshankun committed
78

wangshankun's avatar
wangshankun committed
79
80
        self.timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32, device=self.device)
        self.timesteps_ori = self.timesteps.clone()
wangshankun's avatar
wangshankun committed
81

wangshankun's avatar
wangshankun committed
82
83
        self.sigmas = self.timesteps_ori / self.num_train_timesteps
        self.sigmas = self.sample_shift * self.sigmas / (1 + (self.sample_shift - 1) * self.sigmas)
wangshankun's avatar
wangshankun committed
84

wangshankun's avatar
wangshankun committed
85
        self.timesteps = self.sigmas * self.num_train_timesteps
wangshankun's avatar
wangshankun committed
86
87
88
89

    def step_post(self):
        model_output = self.noise_pred.to(torch.float32)
        sample = self.latents.to(torch.float32)
helloyongyang's avatar
helloyongyang committed
90
91
        sigma = self.unsqueeze_to_ndim(self.sigmas[self.step_index], sample.ndim).to(sample.device, sample.dtype)
        sigma_next = self.unsqueeze_to_ndim(self.sigmas[self.step_index + 1], sample.ndim).to(sample.device, sample.dtype)
92
        x_t_next = sample + (sigma_next - sigma) * model_output
wangshankun's avatar
wangshankun committed
93
        self.latents = x_t_next
sandy's avatar
sandy committed
94
95
        if self.config["model_cls"] == "wan2.2_audio" and self.prev_latents is not None:
            self.latents = (1.0 - self.mask) * self.prev_latents + self.mask * self.latents
wangshankun's avatar
wangshankun committed
96

sandy's avatar
sandy committed
97
98
99
100
    def reset(self, previmg_encoder_output=None):
        if self.config["model_cls"] == "wan2.2_audio":
            self.prev_latents = previmg_encoder_output["prev_latents"]
            self.prev_len = previmg_encoder_output["prev_len"]
wangshankun's avatar
wangshankun committed
101
102
103
        self.prepare_latents(self.config.target_shape, dtype=torch.float32)
        gc.collect()
        torch.cuda.empty_cache()
wangshankun's avatar
wangshankun committed
104

helloyongyang's avatar
helloyongyang committed
105
106
107
108
109
110
111
    def unsqueeze_to_ndim(self, in_tensor, tgt_n_dim):
        if in_tensor.ndim > tgt_n_dim:
            logger.warning(f"the given tensor of shape {in_tensor.shape} is expected to unsqueeze to {tgt_n_dim}, the original tensor will be returned")
            return in_tensor
        if in_tensor.ndim < tgt_n_dim:
            in_tensor = in_tensor[(...,) + (None,) * (tgt_n_dim - in_tensor.ndim)]
        return in_tensor
112
113
114
115
116
117
118
119
120
121
122
123
124


class ConsistencyModelScheduler(EulerScheduler):
    def step_post(self):
        model_output = self.noise_pred.to(torch.float32)
        sample = self.latents.to(torch.float32)
        sigma = self.unsqueeze_to_ndim(self.sigmas[self.step_index], sample.ndim).to(sample.device, sample.dtype)
        sigma_next = self.unsqueeze_to_ndim(self.sigmas[self.step_index + 1], sample.ndim).to(sample.device, sample.dtype)
        x0 = sample - model_output * sigma
        x_t_next = x0 * (1 - sigma_next) + sigma_next * torch.randn(x0.shape, dtype=x0.dtype, device=x0.device, generator=self.generator)
        self.latents = x_t_next
        if self.config["model_cls"] == "wan2.2_audio" and self.prev_latents is not None:
            self.latents = (1.0 - self.mask) * self.prev_latents + self.mask * self.latents