dit.py 4.07 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
from typing import Optional
from fastapi import FastAPI
from pydantic import BaseModel
from loguru import logger
import uvicorn
import json
import os
import torch
from lightx2v.common.ops import *

from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.models.runners.hunyuan.hunyuan_runner import HunyuanRunner
from lightx2v.models.runners.wan.wan_runner import WanRunner
from lightx2v.models.runners.wan.wan_causvid_runner import WanCausVidRunner
from lightx2v.models.runners.wan.wan_skyreels_v2_df_runner import WanSkyreelsV2DFRunner

from lightx2v.utils.profiler import ProfilingContext
from lightx2v.utils.set_config import set_config
from lightx2v.utils.service_utils import TaskStatusMessage, BaseServiceStatus, ProcessManager, TensorTransporter, ImageTransporter

tensor_transporter = TensorTransporter()
image_transporter = ImageTransporter()

# =========================
# FastAPI Related Code
# =========================

runner = None

app = FastAPI()


class Message(BaseModel):
    task_id: str
    task_id_must_unique: bool = False

    inputs: bytes
    kwargs: bytes

    def get(self, key, default=None):
        return getattr(self, key, default)


class DiTServiceStatus(BaseServiceStatus):
    pass


class DiTRunner:
    def __init__(self, config):
        self.config = config
        self.runner_cls = RUNNER_REGISTER[self.config.model_cls]

        self.runner = self.runner_cls(config)
        self.runner.model = self.runner.load_transformer(self.runner.get_init_device())

    def _run_dit(self, inputs, kwargs):
        self.runner.config.update(tensor_transporter.load_tensor(kwargs))
        self.runner.inputs = tensor_transporter.load_tensor(inputs)
        self.runner.init_scheduler()
        self.runner.model.scheduler.prepare(self.runner.inputs["image_encoder_output"])
        latents, _ = self.runner.run()
        self.runner.end_run()
        return latents


def run_dit(message: Message):
    try:
        global runner
        dit_output = runner._run_dit(message.inputs, message.kwargs)
        DiTServiceStatus.complete_task(message)
        return dit_output
    except Exception as e:
        logger.error(f"task_id {message.task_id} failed: {str(e)}")
        DiTServiceStatus.record_failed_task(message, error=str(e))


@app.post("/v1/local/dit/generate")
def v1_local_dit_generate(message: Message):
    try:
        task_id = DiTServiceStatus.start_task(message)
        dit_output = run_dit(message)
        output = tensor_transporter.prepare_tensor(dit_output)
        del dit_output
        return {"task_id": task_id, "task_status": "completed", "output": output, "kwargs": None}
    except RuntimeError as e:
        return {"error": str(e)}


@app.get("/v1/local/dit/generate/service_status")
async def get_service_status():
    return DiTServiceStatus.get_status_service()


@app.get("/v1/local/dit/generate/get_all_tasks")
async def get_all_tasks():
    return DiTServiceStatus.get_all_tasks()


@app.post("/v1/local/dit/generate/task_status")
async def get_task_status(message: TaskStatusMessage):
    return DiTServiceStatus.get_status_task_id(message.task_id)


# =========================
# Main Entry
# =========================

if __name__ == "__main__":
    ProcessManager.register_signal_handler()
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_cls", type=str, required=True, choices=["wan2.1", "hunyuan", "wan2.1_causvid", "wan2.1_skyreels_v2_df", "cogvideox"], default="hunyuan")
    parser.add_argument("--task", type=str, choices=["t2v", "i2v"], default="t2v")
    parser.add_argument("--model_path", type=str, required=True)
    parser.add_argument("--config_json", type=str, required=True)

    parser.add_argument("--port", type=int, default=9000)
    args = parser.parse_args()
    logger.info(f"args: {args}")

    with ProfilingContext("Init Server Cost"):
        config = set_config(args)
        config["mode"] = "split_server"
        logger.info(f"config:\n{json.dumps(config, ensure_ascii=False, indent=4)}")
        runner = DiTRunner(config)

    uvicorn.run(app, host="0.0.0.0", port=config.port, reload=False, workers=1)