fake_quant.py 1.79 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
7
8
import torch


BLOCK_SIZE = 16

FLOAT4_E2M1_MAX = 6.0
FLOAT8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max

helloyongyang's avatar
fix ci  
helloyongyang committed
9

helloyongyang's avatar
helloyongyang committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def cast_to_fp4(x):
    sign = torch.sign(x)
    x = torch.abs(x)
    x[(x >= 0.0) & (x <= 0.25)] = 0.0
    x[(x > 0.25) & (x < 0.75)] = 0.5
    x[(x >= 0.75) & (x <= 1.25)] = 1.0
    x[(x > 1.25) & (x < 1.75)] = 1.5
    x[(x >= 1.75) & (x <= 2.5)] = 2.0
    x[(x > 2.5) & (x < 3.5)] = 3.0
    x[(x >= 3.5) & (x <= 5.0)] = 4.0
    x[x > 5.0] = 6.0
    return x * sign


def get_reciprocal(x):
    if isinstance(x, torch.Tensor):
        return torch.where(x == 0, torch.tensor(0.0, dtype=x.dtype), 1.0 / x)
    elif isinstance(x, (float, int)):
        return 0.0 if x == 0 else 1.0 / x
    else:
        raise TypeError("Input must be a float, int, or a torch.Tensor.")


def ref_nvfp4_quant(x, global_scale):
    assert global_scale.dtype == torch.float32
    assert x.ndim == 2
    m, n = x.shape
    x = torch.reshape(x, (m, n // BLOCK_SIZE, BLOCK_SIZE))
    vec_max = torch.max(torch.abs(x), dim=-1, keepdim=True)[0].to(torch.float32)
    scale = global_scale * (vec_max * get_reciprocal(FLOAT4_E2M1_MAX))
    scale = scale.to(torch.float8_e4m3fn).to(torch.float32)
    # output_scale = get_reciprocal(scale * get_reciprocal(global_scale))
    output_scale = global_scale * get_reciprocal(scale)

    scaled_x = x.to(torch.float32) * output_scale
    clipped_x = torch.clamp(scaled_x, -6.0, 6.0).reshape(m, n)
    return cast_to_fp4(clipped_x), scale.squeeze(-1)


if __name__ == "__main__":
    x = torch.randn(1, 16, dtype=torch.bfloat16).cuda()
    print(f"x: {x}, {x.shape}")
    global_scale = (6.0 * 448.0 / torch.max(torch.abs(x))).to(torch.float32).cuda()
    quant_x, scale = ref_nvfp4_quant(x, global_scale)
    print(f"quant_x: {quant_x}, {quant_x.shape}")
    print(f"scale: {scale}, {scale.shape}")