va_reader_omni.py 20.8 KB
Newer Older
LiangLiu's avatar
LiangLiu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import datetime
import json
import os
import random
import subprocess
import threading
import time
import traceback
from collections import deque
from copy import deepcopy

import jsonschema
import numpy as np
import torch
import torch.distributed as dist
import zmq
from bson import BSON
from loguru import logger
from scipy.signal import resample


class AudioInfo:
    def __init__(self, info: dict):
        self.sample_count = info["sample_count"]
        self.sample_rate = info["sample_rate"]
        self.channel_count = info["channel_count"]
        self.sample_fmt = info["sample_fmt"]
        self.pts = info["pts"]

    def is_spec_equal(self, other: "AudioInfo") -> bool:
        return self.sample_fmt == other.sample_fmt and self.sample_rate == other.sample_rate and self.channel_count == other.channel_count

    def duration(self) -> datetime.timedelta:
        return datetime.timedelta(seconds=self.sample_count / self.sample_rate)

    def __str__(self):
        return "AudioInfo(sample_count={}, sample_rate={}, channel_count={}, sample_fmt={}, pts={})".format(self.sample_count, self.sample_rate, self.channel_count, self.sample_fmt, self.pts)


class ByteBuffer:
    def __init__(self):
        self.buffer = deque()
        self.current_size = 0
        # is the audio belonging to current turn finished
        self.audio_finished = False

    def add(self, byte_data: bytes):
        self.buffer.append(byte_data)
        self.current_size += len(byte_data)

    def get(self, size=1024):
        data = bytearray()

        while size > 0 and len(self.buffer) > 0:
            chunk = self.buffer.popleft()
            if len(chunk) <= size:
                # 如果当前数据小于size,则将当前数据全部添加到data中
                data.extend(chunk)
                self.current_size -= len(chunk)
                size -= len(chunk)
            else:
                # 如果当前数据大于size,则将当前数据的一部分添加到data中,剩余部分留在缓冲区
                data.extend(chunk[:size])
                self.buffer.appendleft(chunk[size:])  # 剩余部分留在缓冲区
                self.current_size -= size
                size = 0

        return bytes(data)

    def mark_finished(self):
        self.audio_finished = True

    def has_more_voice(self):
        return not self.audio_finished

    def __len__(self):
        return self.current_size


class ChatAdapter:
    def __init__(
        self,
        omni_work_dir: str,
        whep_url: str,
        session_id: str,
        account: str,
        config_files: list[str],
        config_schema_path: str,
        seg_duration: float,
        model_runner,
        huoshan_tts_voice_type,
    ):
        assert os.path.exists(omni_work_dir), f"OMNI work directory {omni_work_dir} does not exist"
        self.omni_work_dir = omni_work_dir
        self.context = zmq.Context()
        self.w2f_socket = self.context.socket(zmq.PULL)
        self.w2f_url = ChatAdapter.select_and_bind(self.w2f_socket)
        self.f2w_socket = self.context.socket(zmq.PUSH)
        self.f2w_url = ChatAdapter.select_and_bind(self.f2w_socket)
        self.recv_thread = None
        self.audio_buffer = ByteBuffer()
        self.audio_info = None
        self.chat_server_cmd = [
            os.path.join(self.omni_work_dir, "bin", "seko-chatter"),
            "--session-id",
            session_id,
            "--account",
            account,
            "--whep-server-url",
            whep_url,
            "--w2f-endpoint",
            self.w2f_url,
            "--f2w-endpoint",
            self.f2w_url,
            "--config-files",
            *config_files,
        ]
        override_config = {}
        if huoshan_tts_voice_type is not None:
            logger.info(f"Use Huoshan TTS voice type: {huoshan_tts_voice_type}")
            override_config["TTS"] = {
                "default_voice_info": {
                    "voice_type": huoshan_tts_voice_type,
                    "provider": "huoshan_stream_tts",
                }
            }
        with open(config_schema_path, "r") as f:
            schema = json.load(f)
        jsonschema.validate(instance=override_config, schema=schema)
        if override_config is not None:
            self.chat_server_cmd.extend(["--override-config", json.dumps(override_config)])
        self.chatter_proc = None

        self.seg_duration = seg_duration
        self.reset_prev = False
        self.status = "blank"
        self.immediate_switch = 0
        self.model_runner = model_runner

    def launch_chat_server(self):
        env = {
            "RUST_LOG": "info,duplex_server=debug,backend_5o=debug",
            "LD_LIBRARY_PATH": os.environ.get("LD_LIBRARY_PATH", "") + ":" + os.path.join(self.omni_work_dir, "lib/"),
            "PATH": os.environ["PATH"] + ":" + os.path.join(self.omni_work_dir, "bin/"),
        }
        self.chatter_proc = subprocess.Popen(self.chat_server_cmd, env=env, cwd=self.omni_work_dir)

    @staticmethod
    def select_and_bind(socket: zmq.Socket) -> str:
        # randomly select a port between 1024 and 6553
        retry_count = 20
        err = None
        while retry_count > 0:
            try:
                port = random.randint(1024, 65535)
                # port = 5555
                url = f"tcp://localhost:{port}"
                socket.bind(url)
                return url
            except zmq.error.ZMQError as e:
                retry_count -= 1
                err = e
        raise err

    # immediate switch to status, discard prev_bytes, set immediate_switch to 1
    def immediate_switch_to(self, status):
        logger.warning(f"VA reader immediate switch to {status}")
        self.reset_prev = True
        self.status = status
        self.immediate_switch = 1
        if self.model_runner is not None:
            self.model_runner.pause_signal = True
            logger.warning(f"Model runner pause signal set to True")

    def recv_loop(self):
        while True:
            try:
                message = self.w2f_socket.recv()
            except Exception:
                logger.error(f"Error receiving message: {traceback.format_exc()}")
                break
            try:
                message = BSON.decode(message)
                msg_type = message["type"]
                logger.debug("Received message type: {}".format(msg_type))
                if msg_type == "AgentAudio":
                    audio = message["audio"]
                    if audio["type"] != "Pcm":
                        logger.error("Unsupported audio type: {}".format(audio["type"]))
                        continue
                    pcm_data = audio["data"]
                    audio_info = AudioInfo(audio["info"])
                    logger.debug("Received audio with duration: {}".format(audio_info.duration()))
                    if self.audio_info is None:
                        self.audio_info = audio_info
                    else:
                        # check if the audio info is the same
                        if not self.audio_info.is_spec_equal(audio_info):
                            raise ValueError("Audio info mismatch")
                    self.audio_buffer.add(pcm_data)
                    # if status is blank and has voice, set immediate switch to 1
                    if self.status == "blank" and self.has_voice(self.seg_duration):
                        self.immediate_switch_to("voice")
                elif msg_type == "AgentStartPlay":
                    logger.debug("Received AgentStartPlay, create new audio buffer")
                    self.audio_buffer = ByteBuffer()
                elif msg_type == "AgentEndPlay":
                    logger.debug("Received AgentEndPlay, mark audio finished")
                    self.audio_buffer.mark_finished()
                elif msg_type == "ClearAgentAudio":
                    logger.warning("Received ClearAgentAudio, clear audio buffer")
                    self.audio_buffer = None
                    self.audio_info = None
                    if self.status == "voice":
                        self.status = "blank"
                        # self.immediate_switch_to("blank")
            except Exception as e:
                logger.error("Error decoding message: {}, continue".format(e))
                continue
        logger.warning("recv loop interrupted")

    def start(self):
        self.launch_chat_server()
        self.recv_thread = threading.Thread(target=self.recv_loop)
        self.recv_thread.start()

    def has_voice(self, duration) -> bool:
        if self.audio_info is None or self.audio_buffer.current_size == 0:
            return False
        bytes_count = round(duration * self.audio_info.sample_rate) * self.audio_info.channel_count * 2  # S16LE assumed
        # if not has enough bytes and maybe has more voice, return False
        if self.audio_buffer.current_size < bytes_count and self.audio_buffer.has_more_voice():
            logger.warning(f"Not enough bytes and maybe has more voice, content_size: {self.audio_buffer.current_size}, bytes_count: {bytes_count}")
            return False
        return bytes_count

    def get_audio(self, fetch_duration) -> (bytes, AudioInfo):
        bytes_count = self.has_voice(fetch_duration)
        if bytes_count is False:
            return None
        pcm_data = self.audio_buffer.get(bytes_count)

        # the actual sample count fetched
        sample_count = len(pcm_data) // (self.audio_info.channel_count * 2)
        logger.debug("Fetched {} bytes audio".format(sample_count))
        logger.debug("After fetch, there are {} bytes left".format(self.audio_buffer.current_size))
        audio_info = deepcopy(self.audio_info)
        audio_info.sample_count = sample_count
        return (pcm_data, audio_info)

    def stop(self):
        self.model_runner = None
        if self.chatter_proc is not None:
            self.chatter_proc.terminate()
            self.chatter_proc.wait()
            self.chatter_proc = None
        self.w2f_socket.close()
        self.f2w_socket.close()

    def __del__(self):
        self.stop()


class OmniVAReader:
    def __init__(
        self,
        rank: int,
        world_size: int,
        stream_url: str,
        segment_duration: float = 5.0625,
        sample_rate: int = 16000,
        audio_channels: int = 1,
        buffer_size: int = 1,
        prev_duration: float = 0.3125,
        target_rank: int = 0,
        model_runner=None,
        huoshan_tts_voice_type=None,
    ):
        self.rank = rank
        self.world_size = world_size
        self.stream_url = stream_url
        self.segment_duration = segment_duration
        self.sample_rate = sample_rate

        self.audio_channels = audio_channels
        self.prev_duration = prev_duration
        self.all_seg_sample_count = int(self.segment_duration * self.sample_rate)
        self.prev_seg_sample_count = int(self.prev_duration * self.sample_rate)
        self.prev_seg_chunk = None

        self.target_rank = target_rank % self.world_size
        self.flag_tensor = torch.tensor([0], dtype=torch.int32).to(device="cuda")
        self.immediate_switch_tensor = torch.tensor([0], dtype=torch.int32).to(device="cuda")
        chunk_size = int(self.segment_duration * self.sample_rate) * 2
        self.audio_tensor = torch.zeros(chunk_size, dtype=torch.uint8, device="cuda")
        self.chat_adapter = None
        self.model_runner = model_runner
        self.huoshan_tts_voice_type = huoshan_tts_voice_type

        assert self.audio_channels == 1, "Only mono audio is supported for OmniVAReader"
        logger.info(f"VAReader initialized for stream: {stream_url} target_rank: {self.target_rank}")
        logger.info(f"Audio duration per chunk: {segment_duration}s, sample rate: {sample_rate}Hz")

    def init_omni_env(self):
        self.omni_work_dir = os.getenv("OMNI_WORK_DIR", "/path/of/seko_chatter/")
        self.session_id = os.getenv("OMNI_SESSION_ID", "")
        self.account = os.getenv("OMNI_ACCOUNT", "")
        self.config_files = os.getenv("OMNI_CONFIG_FILES", "").split(",")
        self.config_schema_path = os.getenv("OMNI_CONFIG_SCHEMA_PATH", None)
        assert os.path.exists(self.omni_work_dir), f"OMNI work directory {self.omni_work_dir} does not exist"
        assert self.session_id and self.account, "OMNI_SESSION_ID and OMNI_ACCOUNT are required"
        logger.info(
            f"OMNI work directory: {self.omni_work_dir}, session_id: {self.session_id}, account: {self.account}, config_files: {self.config_files}, config_schema_path: {self.config_schema_path}"
        )

    def start(self):
        if self.rank == self.target_rank:
            self.init_omni_env()
            assert self.stream_url.startswith("http"), "Only HTTP stream is supported for OmniVAReader"
            self.chat_adapter = ChatAdapter(
                omni_work_dir=self.omni_work_dir,
                whep_url=self.stream_url,
                session_id=self.session_id,
                account=self.account,
                config_files=self.config_files,
                config_schema_path=self.config_schema_path,
                seg_duration=self.segment_duration,
                model_runner=self.model_runner,
                huoshan_tts_voice_type=self.huoshan_tts_voice_type,
            )
            self.chat_adapter.start()
            logger.info(f"OmniVAReader {self.rank}/{self.world_size} started successfully")
        else:
            logger.info(f"OmniVAReader {self.rank}/{self.world_size} wait only")
        if self.world_size > 1:
            logger.info(f"OmniVAReader {self.rank}/{self.world_size} wait barrier")
            dist.barrier()
            logger.info(f"OmniVAReader {self.rank}/{self.world_size} end barrier")

    def braodcast_audio_data(self, audio_data):
        if self.rank == self.target_rank:
            if audio_data is None:
                self.flag_tensor.fill_(0)
            else:
                self.flag_tensor.fill_(1)
                self.audio_tensor.copy_(torch.frombuffer(bytearray(audio_data), dtype=torch.uint8))
                # logger.info(f"rank {self.rank} send audio_tensor: {self.audio_tensor.shape}")

        dist.broadcast(self.flag_tensor, src=self.target_rank)
        if self.flag_tensor.item() == 0:
            return None

        dist.broadcast(self.audio_tensor, src=self.target_rank)
        if self.rank != self.target_rank:
            # logger.info(f"rank {self.rank} recv audio_tensor: {self.audio_tensor.shape}")
            audio_data = self.audio_tensor.cpu().numpy().tobytes()
        return audio_data

    def bytes_to_ndarray(self, audio_data):
        if audio_data is None:
            return None
        audio_data = np.frombuffer(audio_data, dtype=np.int16)
        audio_data = audio_data.astype(np.float32) / 32768.0
        # logger.info(f"Got segment audio rank={self.rank}: {audio_data.shape} {audio_data.dtype} {audio_data.min()} {audio_data.max()}")
        return audio_data

    def convert_pcm_s16le_to_mono_resampled(self, audio_data, audio_info):
        audio = np.frombuffer(audio_data, dtype=np.int16)
        sample_count = audio_info.sample_count
        assert len(audio) == sample_count * audio_info.channel_count, f"audio length {len(audio)} != sample_count * channel_count {sample_count * audio_info.channel_count}"
        # convert to mono
        if audio_info.channel_count > 1:
            audio = audio.reshape(-1, audio_info.channel_count).mean(axis=1)

        # logger.info(f"audio: {audio.shape} {audio.dtype} {audio.min()} {audio.max()}")
        if audio_info.sample_rate != self.sample_rate:
            sample_count = int(len(audio) * self.sample_rate / audio_info.sample_rate)
            audio = resample(audio, sample_count).astype(np.int16)
            # logger.info(f"resampled audio: {audio.shape} {audio.dtype} {audio.min()} {audio.max()} {sample_count}")
        logger.warning(f"valid audio: {audio.shape} {audio.dtype} {audio.min()} {audio.max()} {sample_count}")
        return audio, sample_count

    def prepare_audio_data(self, chat_audio_result):
        sample_count = 0
        audio = np.array([], dtype=np.int16)

        # convert chat audio result to mono and target sample rate
        if chat_audio_result is not None:
            audio_data, audio_info = chat_audio_result
            audio, sample_count = self.convert_pcm_s16le_to_mono_resampled(audio_data, audio_info)

        # if is not the first segment, concat with previous segment
        if self.prev_seg_chunk is not None:
            audio = np.concatenate([self.prev_seg_chunk, audio])
            sample_count = len(audio)
        assert sample_count <= self.all_seg_sample_count, f"audio length {sample_count} > all_seg_sample_count {self.all_seg_sample_count}"

        # pad 0 to the audio to make it the same length as all_seg_sample_count
        if sample_count < self.all_seg_sample_count:
            pad_count = self.all_seg_sample_count - sample_count
            # logger.info(f"pad {pad_count} samples to audio")
            audio = np.pad(audio, (0, pad_count), mode="constant", constant_values=0)
            sample_count = len(audio)

        # update prev seg chunk
        self.prev_seg_chunk = audio[-self.prev_seg_sample_count :]
        # logger.info(f"audio: {audio.shape} {audio.dtype} {audio.min()} {audio.max()} {sample_count}, prev seg chunk: {self.prev_seg_chunk.shape}")
        return audio.tobytes()

    def get_fetch_duration(self):
        fetch_duration = self.segment_duration
        # after immediate switch, reset prev seg chunk
        if self.chat_adapter.reset_prev:
            self.prev_seg_chunk = None
            self.chat_adapter.reset_prev = False
            logger.warning(f"Reset prev seg chunk")
        # first segment, fetch segment_duration, else fetch segment_duration - prev_duration
        if self.prev_seg_chunk is not None:
            fetch_duration -= self.prev_duration
        return fetch_duration

    def get_audio_segment(self):
        audio_data = None
        if self.rank == self.target_rank:
            try:
                fetch_duration = self.get_fetch_duration()
                # logger.info(f"Get segment, fetch_duration: {fetch_duration}")
                if self.chat_adapter.status == "voice":
                    audio_result = self.chat_adapter.get_audio(fetch_duration)
                    audio_data = self.prepare_audio_data(audio_result)
                    # think all voice segments inferred, naturally switch to blank
                    if audio_result is None:
                        logger.info(f"Think all voice segments inferred, naturally switch to blank")
                        self.chat_adapter.status = "blank"
                else:
                    audio_data = self.prepare_audio_data(None)
            except Exception as e:
                logger.warning(f"Failed to get voice segment: {e}")
                return None
        if self.world_size > 1:
            audio_data = self.braodcast_audio_data(audio_data)
        audio_data = self.bytes_to_ndarray(audio_data)
        return audio_data

    def get_immediate_switch(self):
        if self.rank == self.target_rank:
            if self.chat_adapter.immediate_switch == 1:
                self.immediate_switch_tensor.fill_(1)
                # reset immediate switch
                self.chat_adapter.immediate_switch = 0
            else:
                self.immediate_switch_tensor.fill_(0)
        dist.broadcast(self.immediate_switch_tensor, src=self.target_rank)
        immediate_switch = self.immediate_switch_tensor.item()
        return immediate_switch

    def stop(self):
        self.model_runner = None
        if self.chat_adapter is not None:
            self.chat_adapter.stop()
            self.chat_adapter = None
            logger.warning("OmniVAReader stopped")

    def __del__(self):
        self.stop()


if __name__ == "__main__":
    WORLD_SIZE = int(os.environ.get("WORLD_SIZE", 1))
    RANK = int(os.environ.get("RANK", 0))
    if WORLD_SIZE > 1:
        dist.init_process_group(backend="nccl")
        torch.cuda.set_device(dist.get_rank())
        logger.info(f"Distributed initialized: rank={RANK}, world_size={WORLD_SIZE}")

    reader = OmniVAReader(
        RANK,
        WORLD_SIZE,
        "https://reverse.st-oc-01.chielo.org/10.5.64.49:8000/rtc/v1/whep/?app=publish&stream=test_stream_ll&eip=10.120.114.82:8000",
        segment_duration=17 / 16,
        sample_rate=16000,
        audio_channels=1,
        prev_duration=1 / 16,
    )
    reader.start()
    fail_count = 0
    max_fail_count = 100000000

    try:
        while True:
            audio_data = reader.get_audio_segment(timeout=1)
            if audio_data is not None:
                logger.info(f"Got audio chunk, shape: {audio_data.shape}, range: [{audio_data.min()}, {audio_data.max()}]")
                fail_count = 0
            else:
                fail_count += 1
                if fail_count > max_fail_count:
                    logger.warning("Failed to get audio chunk, stop reader")
                    reader.stop()
                    break
            time.sleep(0.95)
    finally:
        reader.stop()