readme.md 12 KB
Newer Older
1
# Model Conversion Tool
2

gushiqiao's avatar
gushiqiao committed
3
A powerful model weight conversion tool that supports format conversion, quantization, LoRA merging, and more.
4

gushiqiao's avatar
gushiqiao committed
5
## Main Features
6

gushiqiao's avatar
gushiqiao committed
7
- **Format Conversion**: Support PyTorch (.pth) and SafeTensors (.safetensors) format conversion
Bilang ZHANG's avatar
Bilang ZHANG committed
8
- **Model Quantization**: Support INT8, FP8, NVFP4, MXFP4, MXFP6 and MXFP8 quantization to significantly reduce model size
gushiqiao's avatar
gushiqiao committed
9
10
11
12
13
- **Architecture Conversion**: Support conversion between LightX2V and Diffusers architectures
- **LoRA Merging**: Support loading and merging multiple LoRA formats
- **Multi-Model Support**: Support Wan DiT, Qwen Image DiT, T5, CLIP, etc.
- **Flexible Saving**: Support single file, block-based, and chunked saving methods
- **Parallel Processing**: Support parallel acceleration for large model conversion
14

gushiqiao's avatar
gushiqiao committed
15
## Supported Model Types
16

Yang Yong (雍洋)'s avatar
Yang Yong (雍洋) committed
17
- `hunyuan_dit`: hunyuan DiT 1.5 models
gushiqiao's avatar
gushiqiao committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
- `wan_dit`: Wan DiT series models (default)
- `wan_animate_dit`: Wan Animate DiT models
- `qwen_image_dit`: Qwen Image DiT models
- `wan_t5`: Wan T5 text encoder
- `wan_clip`: Wan CLIP vision encoder

## Core Parameters

### Basic Parameters

- `-s, --source`: Input path (file or directory)
- `-o, --output`: Output directory path
- `-o_e, --output_ext`: Output format, `.pth` or `.safetensors` (default)
- `-o_n, --output_name`: Output file name (default: `converted`)
- `-t, --model_type`: Model type (default: `wan_dit`)

### Architecture Conversion Parameters

- `-d, --direction`: Conversion direction
  - `None`: No architecture conversion (default)
  - `forward`: LightX2V → Diffusers
  - `backward`: Diffusers → LightX2V

### Quantization Parameters

- `--quantized`: Enable quantization
- `--bits`: Quantization bit width, currently only supports 8-bit
Bilang ZHANG's avatar
Bilang ZHANG committed
45
46
47
48
49
50
51
- `--linear_type`: Linear layer quantization type
  - `int8`: INT8 quantization (torch.int8)
  - `fp8`: FP8 quantization (torch.float8_e4m3fn)
  - `nvfp4`: NVFP4 quantization
  - `mxfp4`: MXFP4 quantization
  - `mxfp6`: MXFP6 quantization
  - `mxfp8`: MXFP8 quantization
gushiqiao's avatar
gushiqiao committed
52
53
54
55
- `--non_linear_dtype`: Non-linear layer data type
  - `torch.bfloat16`: BF16
  - `torch.float16`: FP16
  - `torch.float32`: FP32 (default)
56
- `--device`: Device for quantization, `cpu` or `cuda` (default)
Bilang ZHANG's avatar
Bilang ZHANG committed
57
- `--comfyui_mode`: ComfyUI compatible mode (only int8 and fp8)
gushiqiao's avatar
gushiqiao committed
58
- `--full_quantized`: Full quantization mode (effective in ComfyUI mode)
Bilang ZHANG's avatar
Bilang ZHANG committed
59
For nvfp4, mxfp4, mxfp6 and mxfp8, please install them fllowing LightX2V/lightx2v_kernel/README.md.
gushiqiao's avatar
gushiqiao committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

### LoRA Parameters

- `--lora_path`: LoRA file path(s), supports multiple (separated by spaces)
- `--lora_strength`: LoRA strength coefficients, supports multiple (default: 1.0)
- `--alpha`: LoRA alpha parameters, supports multiple
- `--lora_key_convert`: LoRA key conversion mode
  - `auto`: Auto-detect (default)
  - `same`: Use original key names
  - `convert`: Apply same conversion as model

### Saving Parameters

- `--single_file`: Save as single file (note: large models consume significant memory)
- `-b, --save_by_block`: Save by blocks (recommended for backward conversion)
- `-c, --chunk-size`: Chunk size (default: 100, 0 means no chunking)
- `--copy_no_weight_files`: Copy non-weight files from source directory

### Performance Parameters

- `--parallel`: Enable parallel processing (default: True)
- `--no-parallel`: Disable parallel processing

## Supported LoRA Formats

The tool automatically detects and supports the following LoRA formats:

1. **Standard**: `{key}.lora_up.weight` and `{key}.lora_down.weight`
2. **Diffusers**: `{key}_lora.up.weight` and `{key}_lora.down.weight`
3. **Diffusers V2**: `{key}.lora_B.weight` and `{key}.lora_A.weight`
4. **Diffusers V3**: `{key}.lora.up.weight` and `{key}.lora.down.weight`
5. **Mochi**: `{key}.lora_B` and `{key}.lora_A` (no .weight suffix)
6. **Transformers**: `{key}.lora_linear_layer.up.weight` and `{key}.lora_linear_layer.down.weight`
7. **Qwen**: `{key}.lora_B.default.weight` and `{key}.lora_A.default.weight`

Additionally supports diff formats:
- `.diff`: Weight diff
- `.diff_b`: Bias diff
- `.diff_m`: Modulation diff

## Usage Examples

### 1. Model Quantization

#### 1.1 Wan DiT Quantization to INT8

**Multiple safetensors, saved by dit blocks**
107
108
```bash
python converter.py \
gushiqiao's avatar
gushiqiao committed
109
110
    --source /path/to/Wan2.1-I2V-14B-480P/ \
    --output /path/to/output \
gushiqiao's avatar
Fix  
gushiqiao committed
111
    --output_ext .safetensors \
112
    --output_name wan_int8 \
Bilang ZHANG's avatar
Bilang ZHANG committed
113
    --linear_type int8 \
gushiqiao's avatar
gushiqiao committed
114
115
116
    --model_type wan_dit \
    --quantized \
    --save_by_block
117
118
```

gushiqiao's avatar
gushiqiao committed
119
**Single safetensor file**
120
121
```bash
python converter.py \
gushiqiao's avatar
gushiqiao committed
122
123
    --source /path/to/Wan2.1-I2V-14B-480P/ \
    --output /path/to/output \
gushiqiao's avatar
Fix  
gushiqiao committed
124
    --output_ext .safetensors \
gushiqiao's avatar
gushiqiao committed
125
    --output_name wan2.1_i2v_480p_int8_lightx2v \
Bilang ZHANG's avatar
Bilang ZHANG committed
126
    --linear_type int8 \
gushiqiao's avatar
gushiqiao committed
127
128
    --model_type wan_dit \
    --quantized \
gushiqiao's avatar
gushiqiao committed
129
    --single_file
130
131
```

gushiqiao's avatar
gushiqiao committed
132
#### 1.2 Wan DiT Quantization to FP8
GoatWu's avatar
GoatWu committed
133

gushiqiao's avatar
gushiqiao committed
134
**Multiple safetensors, saved by dit blocks**
GoatWu's avatar
GoatWu committed
135
136
```bash
python converter.py \
gushiqiao's avatar
gushiqiao committed
137
138
    --source /path/to/Wan2.1-I2V-14B-480P/ \
    --output /path/to/output \
GoatWu's avatar
GoatWu committed
139
    --output_ext .safetensors \
gushiqiao's avatar
gushiqiao committed
140
    --output_name wan_fp8 \
Bilang ZHANG's avatar
Bilang ZHANG committed
141
    --linear_type fp8 \
gushiqiao's avatar
gushiqiao committed
142
    --non_linear_dtype torch.bfloat16 \
GoatWu's avatar
GoatWu committed
143
    --model_type wan_dit \
gushiqiao's avatar
gushiqiao committed
144
145
    --quantized \
    --save_by_block
GoatWu's avatar
GoatWu committed
146
147
```

gushiqiao's avatar
gushiqiao committed
148
**Single safetensor file**
149
150
```bash
python converter.py \
gushiqiao's avatar
gushiqiao committed
151
152
    --source /path/to/Wan2.1-I2V-14B-480P/ \
    --output /path/to/output \
gushiqiao's avatar
Fix  
gushiqiao committed
153
    --output_ext .safetensors \
gushiqiao's avatar
gushiqiao committed
154
    --output_name wan2.1_i2v_480p_scaled_fp8_e4m3_lightx2v \
Bilang ZHANG's avatar
Bilang ZHANG committed
155
    --linear_type fp8 \
gushiqiao's avatar
gushiqiao committed
156
157
158
159
    --non_linear_dtype torch.bfloat16 \
    --model_type wan_dit \
    --quantized \
    --single_file
160
161
```

gushiqiao's avatar
gushiqiao committed
162
**ComfyUI scaled_fp8 format**
163
164
```bash
python converter.py \
gushiqiao's avatar
gushiqiao committed
165
166
    --source /path/to/Wan2.1-I2V-14B-480P/ \
    --output /path/to/output \
167
    --output_ext .safetensors \
gushiqiao's avatar
gushiqiao committed
168
    --output_name wan2.1_i2v_480p_scaled_fp8_e4m3_lightx2v_comfyui \
Bilang ZHANG's avatar
Bilang ZHANG committed
169
    --linear_type fp8 \
gushiqiao's avatar
gushiqiao committed
170
171
    --non_linear_dtype torch.bfloat16 \
    --model_type wan_dit \
172
    --quantized \
gushiqiao's avatar
gushiqiao committed
173
174
    --single_file \
    --comfyui_mode
175
176
```

gushiqiao's avatar
gushiqiao committed
177
**ComfyUI full FP8 format**
178
179
```bash
python converter.py \
gushiqiao's avatar
gushiqiao committed
180
181
    --source /path/to/Wan2.1-I2V-14B-480P/ \
    --output /path/to/output \
182
    --output_ext .safetensors \
gushiqiao's avatar
gushiqiao committed
183
    --output_name wan2.1_i2v_480p_scaled_fp8_e4m3_lightx2v_comfyui \
Bilang ZHANG's avatar
Bilang ZHANG committed
184
    --linear_type fp8 \
gushiqiao's avatar
gushiqiao committed
185
186
    --non_linear_dtype torch.bfloat16 \
    --model_type wan_dit \
187
    --quantized \
gushiqiao's avatar
gushiqiao committed
188
189
190
    --single_file \
    --comfyui_mode \
    --full_quantized
191
```
192

gushiqiao's avatar
gushiqiao committed
193
> **Tip**: For other DIT models, simply switch the `--model_type` parameter
194

gushiqiao's avatar
gushiqiao committed
195
196
197
#### 1.3 T5 Encoder Quantization

**INT8 Quantization**
198
199
```bash
python converter.py \
gushiqiao's avatar
gushiqiao committed
200
201
202
    --source /path/to/models_t5_umt5-xxl-enc-bf16.pth \
    --output /path/to/output \
    --output_ext .pth \
203
    --output_name models_t5_umt5-xxl-enc-int8 \
Bilang ZHANG's avatar
Bilang ZHANG committed
204
    --linear_type int8 \
gushiqiao's avatar
gushiqiao committed
205
    --non_linear_dtype torch.bfloat16 \
gushiqiao's avatar
gushiqiao committed
206
207
    --model_type wan_t5 \
    --quantized
208
209
```

gushiqiao's avatar
gushiqiao committed
210
**FP8 Quantization**
211
212
```bash
python converter.py \
gushiqiao's avatar
gushiqiao committed
213
214
215
    --source /path/to/models_t5_umt5-xxl-enc-bf16.pth \
    --output /path/to/output \
    --output_ext .pth \
216
    --output_name models_t5_umt5-xxl-enc-fp8 \
Bilang ZHANG's avatar
Bilang ZHANG committed
217
    --linear_type fp8 \
gushiqiao's avatar
gushiqiao committed
218
    --non_linear_dtype torch.bfloat16 \
gushiqiao's avatar
gushiqiao committed
219
220
    --model_type wan_t5 \
    --quantized
221
222
```

gushiqiao's avatar
gushiqiao committed
223
224
225
226
227
228
229
230
231
#### 1.4 CLIP Encoder Quantization

**INT8 Quantization**
```bash
python converter.py \
    --source /path/to/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth \
    --output /path/to/output \
    --output_ext .pth \
    --output_name models_clip_open-clip-xlm-roberta-large-vit-huge-14-int8 \
Bilang ZHANG's avatar
Bilang ZHANG committed
232
    --linear_type int8 \
gushiqiao's avatar
gushiqiao committed
233
234
235
236
237
238
239
240
241
242
243
244
    --non_linear_dtype torch.float16 \
    --model_type wan_clip \
    --quantized
```

**FP8 Quantization**
```bash
python converter.py \
    --source /path/to/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth \
    --output /path/to/output \
    --output_ext .pth \
    --output_name models_clip_open-clip-xlm-roberta-large-vit-huge-14-fp8 \
Bilang ZHANG's avatar
Bilang ZHANG committed
245
    --linear_type fp8 \
gushiqiao's avatar
gushiqiao committed
246
247
248
249
250
    --non_linear_dtype torch.float16 \
    --model_type wan_clip \
    --quantized
```

Yang Yong (雍洋)'s avatar
Yang Yong (雍洋) committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282


#### 1.5 Qwen25_vl llm Quantization

**INT8 Quantization**
```bash
python converter.py \
    --source /path/to/hunyuanvideo-1.5/text_encoder/llm \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name qwen25vl-llm-int8 \
    --linear_dtype torch.int8 \
    --non_linear_dtype torch.float16 \
    --model_type qwen25vl_llm \
    --quantized \
    --single_file
```

**FP8 Quantization**
```bash
python converter.py \
    --source /path/to/hunyuanvideo-1.5/text_encoder/llm \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name qwen25vl-llm-fp8 \
    --linear_dtype torch.float8_e4m3fn \
    --non_linear_dtype torch.float16 \
    --model_type qwen25vl_llm \
    --quantized \
    --single_file
```

gushiqiao's avatar
gushiqiao committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
### 2. LoRA Merging

#### 2.1 Merge Single LoRA

```bash
python converter.py \
    --source /path/to/base_model/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name merged_model \
    --model_type wan_dit \
    --lora_path /path/to/lora.safetensors \
    --lora_strength 1.0 \
    --single_file
```
298

gushiqiao's avatar
gushiqiao committed
299
#### 2.2 Merge Multiple LoRAs
300
301
302

```bash
python converter.py \
gushiqiao's avatar
gushiqiao committed
303
304
305
306
307
308
309
310
311
312
313
    --source /path/to/base_model/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name merged_model \
    --model_type wan_dit \
    --lora_path /path/to/lora1.safetensors /path/to/lora2.safetensors \
    --lora_strength 1.0 0.8 \
    --single_file
```

#### 2.3 LoRA Merging with Quantization
314

gushiqiao's avatar
gushiqiao committed
315
316
317
318
319
320
321
322
323
324
325
**LoRA Merge → FP8 Quantization**
```bash
python converter.py \
    --source /path/to/base_model/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name merged_quantized \
    --model_type wan_dit \
    --lora_path /path/to/lora.safetensors \
    --lora_strength 1.0 \
    --quantized \
Bilang ZHANG's avatar
Bilang ZHANG committed
326
    --linear_type fp8 \
gushiqiao's avatar
gushiqiao committed
327
    --single_file
328
```
gushiqiao's avatar
gushiqiao committed
329
330

**LoRA Merge → ComfyUI scaled_fp8**
331
332
```bash
python converter.py \
gushiqiao's avatar
gushiqiao committed
333
334
335
336
337
338
339
340
    --source /path/to/base_model/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name merged_quantized \
    --model_type wan_dit \
    --lora_path /path/to/lora.safetensors \
    --lora_strength 1.0 \
    --quantized \
Bilang ZHANG's avatar
Bilang ZHANG committed
341
    --linear_type fp8 \
gushiqiao's avatar
gushiqiao committed
342
343
    --single_file \
    --comfyui_mode
344
```
345

gushiqiao's avatar
gushiqiao committed
346
347
348
349
350
351
352
353
354
355
356
**LoRA Merge → ComfyUI Full FP8**
```bash
python converter.py \
    --source /path/to/base_model/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name merged_quantized \
    --model_type wan_dit \
    --lora_path /path/to/lora.safetensors \
    --lora_strength 1.0 \
    --quantized \
Bilang ZHANG's avatar
Bilang ZHANG committed
357
    --linear_type fp8 \
gushiqiao's avatar
gushiqiao committed
358
359
360
361
    --single_file \
    --comfyui_mode \
    --full_quantized
```
362

gushiqiao's avatar
gushiqiao committed
363
#### 2.4 LoRA Key Conversion Modes
364

gushiqiao's avatar
gushiqiao committed
365
**Auto-detect mode (recommended)**
366
367
```bash
python converter.py \
gushiqiao's avatar
gushiqiao committed
368
369
370
371
372
    --source /path/to/model/ \
    --output /path/to/output \
    --lora_path /path/to/lora.safetensors \
    --lora_key_convert auto \
    --single_file
373
374
```

gushiqiao's avatar
gushiqiao committed
375
**Use original key names (LoRA already in target format)**
376
377
```bash
python converter.py \
gushiqiao's avatar
gushiqiao committed
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    --source /path/to/model/ \
    --output /path/to/output \
    --direction forward \
    --lora_path /path/to/lora.safetensors \
    --lora_key_convert same \
    --single_file
```

**Apply conversion (LoRA in source format)**
```bash
python converter.py \
    --source /path/to/model/ \
    --output /path/to/output \
    --direction forward \
    --lora_path /path/to/lora.safetensors \
    --lora_key_convert convert \
    --single_file
```

### 3. Architecture Format Conversion

#### 3.1 LightX2V → Diffusers

```bash
python converter.py \
    --source /path/to/Wan2.1-I2V-14B-480P \
    --output /path/to/Wan2.1-I2V-14B-480P-Diffusers \
    --output_ext .safetensors \
    --model_type wan_dit \
    --direction forward \
    --chunk-size 100
```

#### 3.2 Diffusers → LightX2V

```bash
python converter.py \
    --source /path/to/Wan2.1-I2V-14B-480P-Diffusers \
    --output /path/to/Wan2.1-I2V-14B-480P \
    --output_ext .safetensors \
    --model_type wan_dit \
    --direction backward \
    --save_by_block
```

### 4. Format Conversion

#### 4.1 .pth → .safetensors

```bash
python converter.py \
    --source /path/to/model.pth \
    --output /path/to/output \
    --output_ext .safetensors \
432
433
    --output_name model \
    --single_file
gushiqiao's avatar
gushiqiao committed
434
435
436
437
438
439
440
441
442
443
444
```

#### 4.2 Multiple .safetensors → Single File

```bash
python converter.py \
    --source /path/to/model_directory/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name merged_model \
    --single_file
445
```