README.md 11.5 KB
Newer Older
gaclove's avatar
gaclove committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# LightX2V Server

## Overview

The LightX2V server is a distributed video generation service built with FastAPI that processes image-to-video tasks using a multi-process architecture with GPU support. It implements a sophisticated task queue system with distributed inference capabilities for high-throughput video generation workloads.

## Architecture

### System Architecture

```mermaid
graph TB
    subgraph "Client Layer"
        Client[HTTP Client]
    end
    
    subgraph "API Layer"
        FastAPI[FastAPI Application]
        ApiServer[ApiServer]
        Router1[Tasks Router<br/>/v1/tasks]
        Router2[Files Router<br/>/v1/files]
        Router3[Service Router<br/>/v1/service]
    end
    
    subgraph "Service Layer"
        TaskManager[TaskManager<br/>Thread-safe Task Queue]
        FileService[FileService<br/>File I/O & Downloads]
        VideoService[VideoGenerationService]
    end
    
    subgraph "Processing Layer"
        Thread[Processing Thread<br/>Sequential Task Loop]
    end
    
    subgraph "Distributed Inference Layer"
        DistService[DistributedInferenceService]
        SharedData[(Shared Data<br/>mp.Manager.dict)]
        TaskEvent[Task Event<br/>mp.Manager.Event]
        ResultEvent[Result Event<br/>mp.Manager.Event]
        
        subgraph "Worker Processes"
            W0[Worker 0<br/>Master/Rank 0]
            W1[Worker 1<br/>Rank 1]
            WN[Worker N<br/>Rank N]
        end
    end
    
    subgraph "Resource Management"
        GPUManager[GPUManager<br/>GPU Detection & Allocation]
        DistManager[DistributedManager<br/>PyTorch Distributed]
        Config[ServerConfig<br/>Configuration]
    end
    
    Client -->|HTTP Request| FastAPI
    FastAPI --> ApiServer
    ApiServer --> Router1
    ApiServer --> Router2
    ApiServer --> Router3
    
    Router1 -->|Create/Manage Tasks| TaskManager
    Router1 -->|Process Tasks| Thread
    Router2 -->|File Operations| FileService
    Router3 -->|Service Status| TaskManager
    
    Thread -->|Get Pending Tasks| TaskManager
    Thread -->|Generate Video| VideoService
    
    VideoService -->|Download Images| FileService
    VideoService -->|Submit Task| DistService
    
    DistService -->|Update| SharedData
    DistService -->|Signal| TaskEvent
    TaskEvent -->|Notify| W0
    W0 -->|Broadcast| W1
    W0 -->|Broadcast| WN
    
    W0 -->|Update Result| SharedData
    W0 -->|Signal| ResultEvent
    ResultEvent -->|Notify| DistService
    
    W0 -.->|Uses| GPUManager
    W1 -.->|Uses| GPUManager
    WN -.->|Uses| GPUManager
    
    W0 -.->|Setup| DistManager
    W1 -.->|Setup| DistManager
    WN -.->|Setup| DistManager
    
    DistService -.->|Reads| Config
    ApiServer -.->|Reads| Config
```

### Components

#### Core Components

| Component | File | Description |
|-----------|------|-------------|
| **ServerManager** | `main.py` | Orchestrates server lifecycle, startup/shutdown sequences |
| **ApiServer** | `api.py` | FastAPI application manager with route registration |
| **TaskManager** | `task_manager.py` | Thread-safe task queue and lifecycle management |
| **FileService** | `service.py` | File I/O, HTTP downloads with retry logic |
| **VideoGenerationService** | `service.py` | Video generation workflow orchestration |
| **DistributedInferenceService** | `service.py` | Multi-process inference management |
| **GPUManager** | `gpu_manager.py` | GPU detection, allocation, and memory management |
| **DistributedManager** | `distributed_utils.py` | PyTorch distributed communication setup |
| **ServerConfig** | `config.py` | Centralized configuration with environment variable support |

## Task Processing Flow

```mermaid
sequenceDiagram
    participant C as Client
    participant API as API Server
    participant TM as TaskManager
    participant PT as Processing Thread
    participant VS as VideoService
    participant FS as FileService
    participant DIS as Distributed<br/>Inference Service
    participant W0 as Worker 0<br/>(Master)
    participant W1 as Worker 1..N
    
    C->>API: POST /v1/tasks<br/>(Create Task)
    API->>TM: create_task()
    TM->>TM: Generate task_id
    TM->>TM: Add to queue<br/>(status: PENDING)
    API->>PT: ensure_processing_thread()
    API-->>C: TaskResponse<br/>(task_id, status: pending)
    
    Note over PT: Processing Loop
    PT->>TM: get_next_pending_task()
    TM-->>PT: task_id
    
    PT->>TM: acquire_processing_lock()
    PT->>TM: start_task()<br/>(status: PROCESSING)
    
    PT->>VS: generate_video_with_stop_event()
    
    alt Image is URL
        VS->>FS: download_image()
        FS->>FS: HTTP download<br/>with retry
        FS-->>VS: image_path
    else Image is Base64
        VS->>FS: save_base64_image()
        FS-->>VS: image_path
    else Image is Upload
        VS->>FS: validate_file()
        FS-->>VS: image_path
    end
    
    VS->>DIS: submit_task(task_data)
    DIS->>DIS: shared_data["current_task"] = task_data
    DIS->>DIS: task_event.set()
    
    Note over W0,W1: Distributed Processing
    W0->>W0: task_event.wait()
    W0->>W0: Get task from shared_data
    W0->>W1: broadcast_task_data()
    
    par Parallel Inference
        W0->>W0: run_pipeline()
    and
        W1->>W1: run_pipeline()
    end
    
    W0->>W0: barrier() for sync
    W0->>W0: shared_data["result"] = result
    W0->>DIS: result_event.set()
    
    DIS->>DIS: result_event.wait()
    DIS->>VS: return result
    VS-->>PT: TaskResponse
    
    PT->>TM: complete_task()<br/>(status: COMPLETED)
    PT->>TM: release_processing_lock()
    
    Note over C: Client Polling
    C->>API: GET /v1/tasks/{task_id}/status
    API->>TM: get_task_status()
    TM-->>API: status info
    API-->>C: Task Status
    
    C->>API: GET /v1/tasks/{task_id}/result
    API->>TM: get_task_status()
    API->>FS: stream_file_response()
    FS-->>API: Video Stream
    API-->>C: Video File
```

## Task States

```mermaid
stateDiagram-v2
    [*] --> PENDING: create_task()
    PENDING --> PROCESSING: start_task()
    PROCESSING --> COMPLETED: complete_task()
    PROCESSING --> FAILED: fail_task()
    PENDING --> CANCELLED: cancel_task()
    PROCESSING --> CANCELLED: cancel_task()
    COMPLETED --> [*]
    FAILED --> [*]
    CANCELLED --> [*]
```

## API Endpoints

see `{base_url}/docs`

### Task Management

- POST `/v1/tasks/`
- POST `/v1/tasks/form`
- GET `/v1/tasks/{task_id}/status`
- GET `/v1/tasks/{task_id}/result`
- DELETE `/v1/tasks/{task_id}`
- DELETE `/v1/tasks/all/running`
- GET `/v1/tasks/`
- GET `/v1/tasks/queue/status`

## Configuration

### Environment Variables

| Variable | Description | Default |
|----------|-------------|---------|
| `LIGHTX2V_HOST` | Server host address | `0.0.0.0` |
| `LIGHTX2V_PORT` | Server port | `8000` |
| `LIGHTX2V_MAX_QUEUE_SIZE` | Maximum task queue size | `100` |
| `LIGHTX2V_CACHE_DIR` | File cache directory | `/tmp/lightx2v_cache` |
| `LIGHTX2V_TASK_TIMEOUT` | Task processing timeout (seconds) | `600` |
| `LIGHTX2V_HTTP_TIMEOUT` | HTTP download timeout (seconds) | `30` |
| `LIGHTX2V_HTTP_MAX_RETRIES` | HTTP download max retries | `3` |
| `LIGHTX2V_MAX_UPLOAD_SIZE` | Maximum upload file size (bytes) | `100MB` |

### Command Line Arguments

```bash
python -m lightx2v.server.main \
    --model_path /path/to/model \
    --model_cls wan2.1_distill \
    --task i2v \
    --host 0.0.0.0 \
    --port 8000 \
    --config_json /path/to/xxx_config.json
```

```bash
python -m lightx2v.server.main \
    --model_path /path/to/model \
    --model_cls wan2.1_distill \
    --task i2v \
    --host 0.0.0.0 \
    --port 8000 \
    --config_json /path/to/xxx_dist_config.json \
    --nproc_per_node 2
```


## Key Features

### 1. Distributed Processing

- **Multi-process architecture** for GPU parallelization
- **Master-worker pattern** with rank 0 as coordinator
- **PyTorch distributed** backend (NCCL for GPU, Gloo for CPU)
- **Automatic GPU allocation** across processes
- **Task broadcasting** with chunked pickle serialization

### 2. Task Queue Management

- **Thread-safe** task queue with locks
- **Sequential processing** with single processing thread
- **Configurable queue limits** with overflow protection
- **Task prioritization** (FIFO)
- **Automatic cleanup** of old completed tasks
- **Cancellation support** for pending and running tasks

### 3. File Management

- **Multiple input formats**: URL, base64, file upload
- **HTTP downloads** with exponential backoff retry
- **Streaming responses** for large video files
- **Cache management** with automatic cleanup
- **File validation** and format detection

### 4. Resilient Architecture

- **Graceful shutdown** with signal handling
- **Process failure recovery** mechanisms
- **Connection pooling** for HTTP clients
- **Timeout protection** at multiple levels
- **Comprehensive error handling** throughout

### 5. Resource Management

- **GPU memory management** with cache clearing
- **Process lifecycle management**
- **Connection pooling** for efficiency
- **Memory-efficient** streaming for large files
- **Automatic resource cleanup** on shutdown

## Performance Considerations

1. **Single Task Processing**: Tasks are processed sequentially to manage GPU memory effectively
2. **Multi-GPU Support**: Distributes inference across available GPUs for parallelization
3. **Connection Pooling**: Reuses HTTP connections to reduce overhead
4. **Streaming Responses**: Large files are streamed to avoid memory issues
5. **Queue Management**: Automatic task cleanup prevents memory leaks
6. **Process Isolation**: Distributed workers run in separate processes for stability

## Usage Examples

### Client Usage

```python
import httpx
import base64

# Create a task with URL image
response = httpx.post(
    "http://localhost:8000/v1/tasks/",
    json={
        "prompt": "A cat playing piano",
        "image_path": "https://example.com/image.jpg",
        "use_prompt_enhancer": True,
        "seed": 42
    }
)
task_id = response.json()["task_id"]

# Create a task with base64 image
with open("image.png", "rb") as f:
    image_base64 = base64.b64encode(f.read()).decode()
response = httpx.post(
    "http://localhost:8000/v1/tasks/",
    json={
        "prompt": "A dog dancing",
        "image_path": f"data:image/png;base64,{image_base64}"
    }
)

# Check task status
status = httpx.get(f"http://localhost:8000/v1/tasks/{task_id}/status")
print(status.json())

# Download result when completed
if status.json()["status"] == "completed":
    video = httpx.get(f"http://localhost:8000/v1/tasks/{task_id}/result")
    with open("output.mp4", "wb") as f:
        f.write(video.content)
```

## Monitoring and Debugging

### Logging

The server uses `loguru` for structured logging. Logs include:

- Request/response details
- Task lifecycle events
- Worker process status
- Error traces with context

### Health Checks

- `/v1/service/status` - Overall service health
- `/v1/tasks/queue/status` - Queue status and processing state
- Process monitoring via system tools (htop, nvidia-smi)

### Common Issues

1. **GPU Out of Memory**: Reduce `nproc_per_node` or adjust model batch size
2. **Task Timeout**: Increase `LIGHTX2V_TASK_TIMEOUT` for longer videos
3. **Queue Full**: Increase `LIGHTX2V_MAX_QUEUE_SIZE` or add rate limiting
4. **Port Conflicts**: Change `LIGHTX2V_PORT` or `MASTER_PORT` range

## Security Considerations

1. **Input Validation**: All inputs validated with Pydantic schemas
2. **File Access**: Restricted to cache directory
3. **Resource Limits**: Configurable queue and file size limits
4. **Process Isolation**: Worker processes run with limited permissions
5. **HTTP Security**: Support for proxy and authentication headers

## License

See the main project LICENSE file for licensing information.