q_linear.py 8.08 KB
Newer Older
1
2
3
import torch
import torch.nn as nn

gushiqiao's avatar
gushiqiao committed
4
5
6
7
try:
    from vllm import _custom_ops as ops
except ModuleNotFoundError:
    ops = None
8

gushiqiao's avatar
gushiqiao committed
9
10
11
12
13
try:
    from torchao.quantization.utils import quant_int8_per_token_matmul, quantize_activation_per_token_absmax
except ModuleNotFoundError:
    quant_int8_per_token_matmul, quantize_activation_per_token_absmax = None, None

gushiqiao's avatar
gushiqiao committed
14
15
16
17
18
try:
    import q8_kernels.functional as Q8F
except ImportError:
    Q8F = None

gushiqiao's avatar
gushiqiao committed
19
20

class VllmQuantLinearInt8(nn.Module):
gushiqiao's avatar
gushiqiao committed
21
    def __init__(self, in_features, out_features, bias=True, dtype=torch.bfloat16):
22
23
24
25
26
27
28
29
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features

        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.int8))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))

        if bias:
gushiqiao's avatar
gushiqiao committed
30
            self.register_buffer("bias", torch.empty(out_features, dtype=dtype))
31
32
33
34
35
36
37
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        input_tensor_quant, input_tensor_scale, _ = ops.scaled_int8_quant(x, scale=None, azp=None, symmetric=True)
        return input_tensor_quant, input_tensor_scale

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    def forward(self, input_tensor):
        input_tensor = input_tensor.squeeze(0)
        shape = (input_tensor.shape[0], self.weight.shape[0])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        torch.ops._C.cutlass_scaled_mm(
            output_tensor,
            input_tensor_quant,
            self.weight.t(),
            input_tensor_scale,
            self.weight_scale.float(),
            self.bias,
        )
        return output_tensor.unsqueeze(0)

gushiqiao's avatar
gushiqiao committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    def _apply(self, fn):
        for module in self.children():
            module._apply(fn)

        def maybe_cast(t):
            if t is not None and t.device != fn(t).device:
                return fn(t)
            return t

        self.weight = maybe_cast(self.weight)
        self.weight_scale = maybe_cast(self.weight_scale)
        self.bias = maybe_cast(self.bias)
        return self

70

gushiqiao's avatar
gushiqiao committed
71
class VllmQuantLinearFp8(nn.Module):
gushiqiao's avatar
gushiqiao committed
72
    def __init__(self, in_features, out_features, bias=True, dtype=torch.bfloat16):
73
74
75
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
gushiqiao's avatar
FIX  
gushiqiao committed
76
77
        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.float8_e4m3fn))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))
78
        if bias:
gushiqiao's avatar
gushiqiao committed
79
            self.register_buffer("bias", torch.empty(out_features, dtype=dtype))
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        input_tensor_quant, input_tensor_scale = ops.scaled_fp8_quant(x, None, scale_ub=None, use_per_token_if_dynamic=True)
        return input_tensor_quant, input_tensor_scale

    def forward(self, input_tensor):
        input_tensor = input_tensor.squeeze(0)
        shape = (input_tensor.shape[0], self.weight.shape[0])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        torch.ops._C.cutlass_scaled_mm(
            output_tensor,
96
            input_tensor_quant,
97
            self.weight.t(),
98
99
            input_tensor_scale,
            self.weight_scale.float(),
100
            self.bias,
101
        )
gushiqiao's avatar
gushiqiao committed
102

103
        return output_tensor.unsqueeze(0)
gushiqiao's avatar
gushiqiao committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117

    def _apply(self, fn):
        for module in self.children():
            module._apply(fn)

        def maybe_cast(t):
            if t is not None and t.device != fn(t).device:
                return fn(t)
            return t

        self.weight = maybe_cast(self.weight)
        self.weight_scale = maybe_cast(self.weight_scale)
        self.bias = maybe_cast(self.bias)
        return self
gushiqiao's avatar
gushiqiao committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159


class TorchaoQuantLinearInt8(nn.Module):
    def __init__(self, in_features, out_features, bias=True, dtype=torch.bfloat16):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features

        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.int8))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))

        if bias:
            self.register_buffer("bias", torch.empty(out_features, dtype=dtype))
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        input_tensor_quant, input_tensor_scale = quantize_activation_per_token_absmax(x)
        return input_tensor_quant, input_tensor_scale

    def forward(self, input_tensor):
        input_tensor = input_tensor.squeeze(0)
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = quant_int8_per_token_matmul(input_tensor_quant, input_tensor_scale, self.weight.t(), self.weight_scale.t().float(), output_dtype=torch.bfloat16)
        if self.bias is not None:
            output_tensor = output_tensor + self.bias

        return output_tensor.unsqueeze(0)

    def _apply(self, fn):
        for module in self.children():
            module._apply(fn)

        def maybe_cast(t):
            if t is not None and t.device != fn(t).device:
                return fn(t)
            return t

        self.weight = maybe_cast(self.weight)
        self.weight_scale = maybe_cast(self.weight_scale)
        self.bias = maybe_cast(self.bias)
        return self
gushiqiao's avatar
gushiqiao committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222


class Q8FQuantLinearInt8(nn.Module):
    def __init__(self, in_features, out_features, bias=True, dtype=torch.float32):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features

        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.int8))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))

        if bias:
            self.register_buffer("bias", torch.empty(out_features, dtype=torch.float32))
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        input_tensor_quant, input_tensor_scale, _ = ops.scaled_int8_quant(x, scale=None, azp=None, symmetric=True)
        return input_tensor_quant, input_tensor_scale

    def forward(self, x):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(x)
        output_tensor = Q8F.linear.q8_linear(
            input_tensor_quant,
            self.weight,
            self.bias if self.bias is not None else None,
            input_tensor_scale,
            self.weight_scale.float(),
            fuse_gelu=False,
            out_dtype=torch.bfloat16,
        )
        return output_tensor


class Q8FQuantLinearFp8(nn.Module):
    def __init__(self, in_features, out_features, bias=True, dtype=torch.float32):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features

        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.float8_e4m3fn))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))

        if bias:
            self.register_buffer("bias", torch.empty(out_features, dtype=torch.float32))
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        input_tensor_quant, input_tensor_scale = ops.scaled_fp8_quant(x.squeeze(0), None, scale_ub=None, use_per_token_if_dynamic=True)
        return input_tensor_quant, input_tensor_scale

    def forward(self, x):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(x)
        output_tensor = Q8F.linear.fp8_linear(
            input_tensor_quant,
            self.weight,
            self.bias if self.bias is not None else None,
            input_tensor_scale,
            self.weight_scale,
            out_dtype=torch.bfloat16,
        )
        return output_tensor